В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
KatherinePirs
KatherinePirs
12.02.2023 07:01 •  Математика

Из множества х={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} выделили подмножества х1, х2, х3. в каком из следующих случаев множество х оказалось разбитым на классы:
а) х1={1, 3, 5, 7, 11}, х2={2, 4, 6, 8, 10, 12}, х3={9};
б) х1={1, 3, 5, 7, 9, 11}, х2={2, 4, 6, 8, 10, 12}, х3={10, 11, 12};
в) х1={3, 6, 9, 12}, х2={1, 5, 7, 11}, х3={2, 10}?

Показать ответ
Ответ:
Versija02
Versija02
09.01.2024 21:08
Привет!

Для решения этой задачи нужно рассмотреть каждый из трех случаев и проверить, разбито ли множество х на классы.

а) х1={1, 3, 5, 7, 11}, х2={2, 4, 6, 8, 10, 12}, х3={9}

Для начала посмотрим, каждое ли число из множества х находится в одном из подмножеств х1, х2 или х3. Если да, то множество х разбито на классы.

Проверим каждое число из множества х:
- Число 1 находится в х1 (1 входит в х1);
- Число 2 находится в х2 (2 входит в х2);
- Число 3 находится в х1 (3 входит в х1);
- Число 4 находится в х2 (4 входит в х2);
- Число 5 находится в х1 (5 входит в х1);
- Число 6 находится в х2 (6 входит в х2);
- Число 7 находится в х1 (7 входит в х1);
- Число 8 находится в х2 (8 входит в х2);
- Число 9 находится в х3 (9 входит в х3);
- Число 10 находится в х2 (10 входит в х2);
- Число 11 находится в х1 (11 входит в х1);
- Число 12 находится в х2 (12 входит в х2).

Таким образом, каждое число из множества х находится в одном из подмножеств х1, х2 или х3, значит, множество х разбито на классы.

б) х1={1, 3, 5, 7, 9, 11}, х2={2, 4, 6, 8, 10, 12}, х3={10, 11, 12}

Снова проверяем каждое число из множества х:
- Число 1 находится в х1 (1 входит в х1);
- Число 2 находится в х2 (2 входит в х2);
- Число 3 находится в х1 (3 входит в х1);
- Число 4 находится в х2 (4 входит в х2);
- Число 5 находится в х1 (5 входит в х1);
- Число 6 находится в х2 (6 входит в х2);
- Число 7 находится в х1 (7 входит в х1);
- Число 8 находится в х2 (8 входит в х2);
- Число 9 находится в х1 (9 входит в х1);
- Число 10 находится в х2 (10 входит в х2);
- Число 11 находится в х1 (11 входит в х1);
- Число 12 находится в х2, но также находится в х3 - значит, 12 не входит только в одно из подмножеств.

Таким образом, множество х не разбито на классы в этом случае.

в) х1={3, 6, 9, 12}, х2={1, 5, 7, 11}, х3={2, 10}

Снова проверяем каждое число из множества х:
- Число 1 находится в х2 (1 входит в х2);
- Число 2 находится в х3 (2 входит в х3);
- Число 3 находится в х1 (3 входит в х1);
- Число 4 не входит ни в одно из подмножеств;
- Число 5 находится в х2 (5 входит в х2);
- Число 6 находится в х1 (6 входит в х1);
- Число 7 находится в х2 (7 входит в х2);
- Число 8 не входит ни в одно из подмножеств;
- Число 9 находится в х1 (9 входит в х1);
- Число 10 находится в х3 (10 входит в х3);
- Число 11 находится в х2 (11 входит в х2);
- Число 12 находится в х1 (12 входит в х1).

Таким образом, каждое число из множества х находится в одном из подмножеств х1, х2 или х3, значит, множество х разбито на классы в данном случае.

В итоге, из предложенных трех случаев только в случае в) множество х оказалось разбитым на классы.

Надеюсь, что объяснение было понятным! Если у тебя есть еще вопросы, не стесняйся задавать!
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота