Из треугольника, с площадью равной 1, легко вырезать 3 равных многоугольника так, что площадь каждого равна 1/4. А как из такого же треугольника вырезать 3 одинаковых многоугольника так, что площадь каждого будет равнять уже 7/25.
Дано линейное уравнение: (1/2)*(3*x-5) = 8-(2/5)*(6-(5/2)*x) Раскрываем скобочки в левой части ур-ния 1/23*x-5 = 8-(2/5)*(6-(5/2)*x) Раскрываем скобочки в правой части ур-ния 1/23*x-5 = 8-2/56+5/2x) Приводим подобные слагаемые в правой части ур-ния: -5/2 + 3*x/2 = 28/5 + x Переносим свободные слагаемые (без x) из левой части в правую, получим: / означает дробь 3x/2=x+81/10
Переносим слагаемые с неизвестным x из правой части в левую: / означает дробь x/2=81/10
Разделим обе части ур-ния на 1/2 x = 81/10 / (1/2) Получим ответ: x = 81/5
Расстояние от метеорологической станции до избушки лесника- 18 км, Лыжник этого расстояния. двигаясь со скоростью 200 м/мин. Сколько часов шёл лыжник ? Сможет ли он пройти оставшееся расстояние за полчаса если он будет двигаться с токой же скоростью18*2/3=12км лыжник12км=12000м12000/200=60мин=1 час12/1=12км/ч - скорость(18-12)/12=0,5 часа - сможет...18*2:3=12 км лыжник 12 км = 12000 м12000:200=60 мин =1ч. - шёл лыжник ответ : лыжник шёл 1 ч. Да , он сможет пройти оставшееся расстояние за полчаса если он будет двигаться с такой же скоростью.
(1/2)*(3*x-5) = 8-(2/5)*(6-(5/2)*x)
Раскрываем скобочки в левой части ур-ния
1/23*x-5 = 8-(2/5)*(6-(5/2)*x)
Раскрываем скобочки в правой части ур-ния
1/23*x-5 = 8-2/56+5/2x)
Приводим подобные слагаемые в правой части ур-ния:
-5/2 + 3*x/2 = 28/5 + x
Переносим свободные слагаемые (без x)
из левой части в правую, получим: / означает дробь 3x/2=x+81/10
Переносим слагаемые с неизвестным x
из правой части в левую: / означает дробь x/2=81/10
Разделим обе части ур-ния на 1/2
x = 81/10 / (1/2)
Получим ответ: x = 81/5