Из турбазы вышли одновременно и пошли в противоположных направления две группы туристов. Одна шла со скоростью 5 км/ч другая - со скоростью 4км/ч. На каком расстоянии друг от друга будут эти группы через 5 часов после выхода? в тетради
Билет №1 Теоретическая часть. 1. Вопрос: Какая функция является линейной? ответ: Линейной является функция вида: f=kx+b. 2. Вопрос: Как умножить степени с одинаковыми основаниями? ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней. Билет №2: Теоретическая часть. 1. Вопрос: Что является графиком линейной функции? Как можно построить такой график? ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой. 2. Вопрос: Как разделить степени с одинаковыми основаниями? ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним. Билет №3 Теоретическая часть. 1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат: ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции). Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0). В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b). 2. Вопрос: Как возвести степень в степень? ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
P. s: Решать практическую часть не буду, т.к могу ошибиться...
1) 98:2 = 49 (проще считать, начиная из середины) 2) 18:2 = 9 (из одной половины вычтем 9, к другой добавим 9. В сумме разница между ними будет равна 18) 3) 1 часть = 49+9 = 58 2 часть = 98-58 = 40 (либо 2 часть = 49-9 = 40)
2. Алгебраический
Пусть 1 часть сетки будет равна Х. А вторая часть сетки будет равна Х-18 (потому что вторая часть на 18 меньше). Тогда: х+(х-18) = 98 х+х-18 = 98 2х-18 = 98 2х = 116 |:2 х=58 - это 1 часть сетки Тогда 2 часть = х-18 = 58-18 = 40
Теоретическая часть.
1. Вопрос: Какая функция является линейной?
ответ: Линейной является функция вида: f=kx+b.
2. Вопрос: Как умножить степени с одинаковыми основаниями?
ответ: При умножения степеней с одинаковыми основаниями степени складываются, а основа остается прежней.
Билет №2:
Теоретическая часть.
1. Вопрос: Что является графиком линейной функции? Как можно построить такой график?
ответ: Графиком линейной функции является ПРЯМАЯ. Что бы построить график линейной функции можно подставить поочередно два любых значения аргумента и вычислить значение функции (получить координаты двух точек) , после чего отметить эти точки на координатной плоскости и соединить их прямой.
2. Вопрос: Как разделить степени с одинаковыми основаниями?
ответ: Чтобы разделить степени с одинаковыми основаниями нужно вычесть степени, а основание оставить прежним.
Билет №3
Теоретическая часть.
1. Вопрос: Как найти точки пересечения графика линейной функции с осями координат:
ответ: Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
Примеры.
1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.
Решение:
В точке пересечения графика функции с осью Ox y=0:
kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
В точке пересечения с осью Oy x=0:
y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
2. Вопрос: Как возвести степень в степень?
ответ: Чтобы возвести степень в степень нужно перемножить степени. Например:
P. s: Решать практическую часть не буду, т.к могу ошибиться...
1. Арифметический
1) 98:2 = 49 (проще считать, начиная из середины)
2) 18:2 = 9 (из одной половины вычтем 9, к другой добавим 9. В сумме разница между ними будет равна 18)
3) 1 часть = 49+9 = 58
2 часть = 98-58 = 40
(либо 2 часть = 49-9 = 40)
2. Алгебраический
Пусть 1 часть сетки будет равна Х. А вторая часть сетки будет равна Х-18 (потому что вторая часть на 18 меньше). Тогда:
х+(х-18) = 98
х+х-18 = 98
2х-18 = 98
2х = 116 |:2
х=58 - это 1 часть сетки
Тогда 2 часть = х-18 = 58-18 = 40
ответ: 40 ; 58