Из журнала выпало несколько листов. Номер первой страницы выпавшей части равен 18, а номер последней равен 48. Сколько страниц было в журнале? * A) 65 B) 64 C) 60 D) 62
Рассмотрим треугольник ABC. AB=7, BC=15. DE=10 - средняя линия, поэтому BC=20. Далее, по теореме косинусов, находим косинус угла между хордами из точки A: cos∠A = (7²+15²-20²)/(2*7*15)=-3/5 Теперь рассмотрим угол, который лежит по другую сторону от хорды BC. Поставим по другую сторону от этой хорды точку A'. Тогда ∠A' = 180°-∠A. Поэтому cos∠A' = -cos∠A=3/5, sin∠A'=sin∠A=√(1-(-3/5)²)=4/5. Центральный угол BOC равен удвоенному углу A': ∠ABOC=2∠A'. sin(∠BOC) = 2*sin∠A' * cos∠A' = 2 * 4/5 * 3/5 = 24/25. Тогда, из теоремы синусов, BC = 2R*sin(∠BOC) = D*sin(∠BOC), откуда D = 20/(24/25) = 125/6.
Далее, по теореме косинусов, находим косинус угла между хордами из точки A: cos∠A = (7²+15²-20²)/(2*7*15)=-3/5
Теперь рассмотрим угол, который лежит по другую сторону от хорды BC. Поставим по другую сторону от этой хорды точку A'. Тогда ∠A' = 180°-∠A. Поэтому cos∠A' = -cos∠A=3/5, sin∠A'=sin∠A=√(1-(-3/5)²)=4/5. Центральный угол BOC равен удвоенному углу A': ∠ABOC=2∠A'.
sin(∠BOC) = 2*sin∠A' * cos∠A' = 2 * 4/5 * 3/5 = 24/25.
Тогда, из теоремы синусов, BC = 2R*sin(∠BOC) = D*sin(∠BOC), откуда D = 20/(24/25) = 125/6.
1. Найдите значение производной функции в точке x₀:
a) y=(3·x-2)⁷, x₀=3
y'=((3·x-2)⁷)'=7·(3·x-2)⁶·(3·x-2)'=7·(3·x-2)⁶·3=21·(3·x-2)⁶
y'(3)=21·(3·3-2)⁶=21·7⁶=21·117649=2470629
б) y=(4-5·x)⁷, x₀=1
y'=((4-5·x)⁷)'=7·(4-5·x)⁶·(4-5·x)'=7·(4-5·x)⁶·(-5)= -35·(4-5·x)⁶
y'(1)= -35·(4-5·1)⁶= -35·(-1)⁶= -35·1= -35
в) y=(2·x+3)⁵, x₀=2
y'=((2·x+3)⁵)'=5·(2·x+3)⁴·(2·x+3)'=5·(2·x+3)⁴·2=10·(2·x+3)⁴
y'(2)=10·(2·2+3)⁴=10·7⁴=10·2401=24010
г) y=(5-3·x)⁷, x₀=1
y'=((5-3·x)⁷)'=7·(5-3·x)⁶·(5-3·x)'=7·(5-3·x)⁶·(-3)= -21·(5-3·x)⁶
y'(1)= -21·(5-3·1)⁶= -21·2⁶= -21·64= -1344
2. Вычислить скорость изменения функции в точке x₀ (скорость изменения равносильно производная первого порядка):
a) y=(2x+1)⁵, x₀= -1
y'=((2·x+1)⁵)'=5·(2·x+1)⁴·(2·x+1)'=5·(2·x+1)⁴·2=10·(2·x+1)⁴
y'(-1)=10·(2·(-1)+1)⁴=10·(-1)⁴=10·1=10
б) , x₀= 1
в) , x₀= 2
г) , x₀= -1
3. Найдите производные функций:
a) y=(x-1)·(x²+x+1) = x³-1
=1·(x²+x+1)+(x-1)·(2·x+1)= x²+x+1+2·x²+x-2·x-1 =3·x²
б)