572.
а) 7 2/13 • 2 = 93/13 • 2/1 = 186/13 = 14 4/13
б) 5 7/16 • 8 = 97/16 • 8/1 =97/2 • 1/1 = 97/2 = 48 1/2 = 48,5
в) 8 3/28 • 5 = 307/28 • 5/1 = 1535/28 = 54 23/28
г) 5/1 • 3 1/5 = 5 • 3,2 = 16
д) 6 3/8 • 2 = 51/8 • 2/1 = 51/4 • 1 = 51/4 = 12 3/4 = 12,75
е) 9 2/9 • 9 = 83/9 • 9/1 = 83
573.
а) (3 3/5 - 2 1/15) • 5 = 2 2/3
1) 3 3/5 - 3 1/15 = 3 9/15 - 3 1/15 = 8/15 2) 8/15 • 5/1 = 8/3 = 2 2/3
б) (1 14/17 - 1 1/34) • 34 = 27
1) 1 14/17 - 1 1/34 = 1 28/34 - 1 1/34 = 27/34
2) 27/34 • 34/1 = 27
в) 3/17 • 5 1/4 + 3 14/17 • 5 1/4 = ( 3/17 + 3 14/17) • 5 1/4 = 4/1 • 21/4 = 21
Больше не могу, сори, время поджимает
где D - это греческая буква "Дельта"
Пошаговое объяснение:
Вычисляете определитель системы D состоящий из коэффициентов при неизвестных:
3 -2 -5
5 -2 -3= (3*(-2)*1+5*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+3*(-3)*1+5*(-2)*1)=(-25)-(-9)=-16
1 1 1
D = -16
Затем вычисляете определитель D1, который отличается от D тем, что первый столбец заменен на столбец из свободных элементов:
0 -2 -5
0 -2 -3 = (0*(-2)*1+0*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+0*(-3)*1+0*(-2)*1)=(6)-(10)=-4
D1 = -4
Далее вычисляете определитель D2, отличающийся от D тем, что второй столбец заменен на столбец свободных элементов.
3 0 -5
5 0 -3 = (3*0*1+5*(-5)*1+0*(-3)*1)-((-5)*0*1+3*(-3)*1+0*5*1)=(-25)-(-9)=-16
D2 = -16
Далее вычисляете определитель D3, отличающийся от D тем, что третий столбец заменен на столбец свободных элементов.
3 -2 0
5 -2 0 = (3*(-2)*1+5*0*1+(-2)*0*1)-(0*(-2)*1+3*0*1+5*(-2)*1)=(-6)-(-10)=4
D3 = 4
Окончательно:
x = D1/D; y = D2/D; z = D3/D.
x = -4 / -16 = ¼
y = -16 / -16 = 1
z = 4 / -16 = -¼
572.
а) 7 2/13 • 2 = 93/13 • 2/1 = 186/13 = 14 4/13
б) 5 7/16 • 8 = 97/16 • 8/1 =97/2 • 1/1 = 97/2 = 48 1/2 = 48,5
в) 8 3/28 • 5 = 307/28 • 5/1 = 1535/28 = 54 23/28
г) 5/1 • 3 1/5 = 5 • 3,2 = 16
д) 6 3/8 • 2 = 51/8 • 2/1 = 51/4 • 1 = 51/4 = 12 3/4 = 12,75
е) 9 2/9 • 9 = 83/9 • 9/1 = 83
573.
а) (3 3/5 - 2 1/15) • 5 = 2 2/3
1) 3 3/5 - 3 1/15 = 3 9/15 - 3 1/15 = 8/15 2) 8/15 • 5/1 = 8/3 = 2 2/3
б) (1 14/17 - 1 1/34) • 34 = 27
1) 1 14/17 - 1 1/34 = 1 28/34 - 1 1/34 = 27/34
2) 27/34 • 34/1 = 27
в) 3/17 • 5 1/4 + 3 14/17 • 5 1/4 = ( 3/17 + 3 14/17) • 5 1/4 = 4/1 • 21/4 = 21
Больше не могу, сори, время поджимает
где D - это греческая буква "Дельта"
Пошаговое объяснение:
Вычисляете определитель системы D состоящий из коэффициентов при неизвестных:
3 -2 -5
5 -2 -3= (3*(-2)*1+5*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+3*(-3)*1+5*(-2)*1)=(-25)-(-9)=-16
1 1 1
D = -16
Затем вычисляете определитель D1, который отличается от D тем, что первый столбец заменен на столбец из свободных элементов:
0 -2 -5
0 -2 -3 = (0*(-2)*1+0*(-5)*1+(-2)*(-3)*1)-((-5)*(-2)*1+0*(-3)*1+0*(-2)*1)=(6)-(10)=-4
1 1 1
D1 = -4
Далее вычисляете определитель D2, отличающийся от D тем, что второй столбец заменен на столбец свободных элементов.
3 0 -5
5 0 -3 = (3*0*1+5*(-5)*1+0*(-3)*1)-((-5)*0*1+3*(-3)*1+0*5*1)=(-25)-(-9)=-16
1 1 1
D2 = -16
Далее вычисляете определитель D3, отличающийся от D тем, что третий столбец заменен на столбец свободных элементов.
3 -2 0
5 -2 0 = (3*(-2)*1+5*0*1+(-2)*0*1)-(0*(-2)*1+3*0*1+5*(-2)*1)=(-6)-(-10)=4
1 1 1
D3 = 4
Окончательно:
x = D1/D; y = D2/D; z = D3/D.
x = -4 / -16 = ¼
y = -16 / -16 = 1
z = 4 / -16 = -¼
где D - это греческая буква "Дельта"