Пошаговое объяснение:
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) > 0 - доказать
Приведём дроби к общему знаменателю 25-b⁴, т.к.
25-b⁴ = (5+ b²) (5-b²)
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) =
= 10/ (25-b⁴) + 1(5-b²)/ (5+ b²)(5-b²) - 1(5+ b²)/ (5-b²)(5+ b²) =
= 10/ (25-b⁴) + (5-b²)/ (25-b⁴) - (5+ b²)/ (25-b⁴) =
= (10 + (5-b²) - (5+ b²))/ (25-b⁴) = (10 + 5-b² - 5- b²)/ (25-b⁴) =
= (10 -2b² ) / (25-b⁴) = 2(5-b²)/ (5-b²)(5+ b²) = 2/(5+ b²)
Рассмотрим дробь 2/(5+ b²). Дробь больше 0, когда её числитель и знаменатель одного знака. 2> 0, значит знаменатель тоже должен быть больше 0. Докажем, что
5+ b²>0,
b²> -5 (квадрат числа всегда больше 0 или равен 0), ч.и т.д.
Решение
Пусть n – число всех участников кружка, а d – число девочек.
Первый . По условию 0,4n < d < 0,5n. Если n нечётно, то число 0,5n – полуцелое, следовательно, 0,1n > 0,5, откуда n > 5. Наименьшее такое n равно 7.
Если n чётно, то число 0,5n – целое, следовательно, 0,1n > 1, откуда n > 10. Это хуже, чем в первом случае.
Второй . Условие можно записать в виде 2d < n < 2,5d. Значит, 0,5d > 1, то есть d > 2. При d = 3 получаем 6 < n < 10, и наименьшее n равно 7.
ответ
7 человек.
Пошаговое объяснение: я старалься =)
Пошаговое объяснение:
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) > 0 - доказать
Приведём дроби к общему знаменателю 25-b⁴, т.к.
25-b⁴ = (5+ b²) (5-b²)
10/ (25-b⁴) + 1/ (5+ b²) - 1/ (5-b²) =
= 10/ (25-b⁴) + 1(5-b²)/ (5+ b²)(5-b²) - 1(5+ b²)/ (5-b²)(5+ b²) =
= 10/ (25-b⁴) + (5-b²)/ (25-b⁴) - (5+ b²)/ (25-b⁴) =
= (10 + (5-b²) - (5+ b²))/ (25-b⁴) = (10 + 5-b² - 5- b²)/ (25-b⁴) =
= (10 -2b² ) / (25-b⁴) = 2(5-b²)/ (5-b²)(5+ b²) = 2/(5+ b²)
Рассмотрим дробь 2/(5+ b²). Дробь больше 0, когда её числитель и знаменатель одного знака. 2> 0, значит знаменатель тоже должен быть больше 0. Докажем, что
5+ b²>0,
b²> -5 (квадрат числа всегда больше 0 или равен 0), ч.и т.д.
Решение
Пусть n – число всех участников кружка, а d – число девочек.
Первый . По условию 0,4n < d < 0,5n. Если n нечётно, то число 0,5n – полуцелое, следовательно, 0,1n > 0,5, откуда n > 5. Наименьшее такое n равно 7.
Если n чётно, то число 0,5n – целое, следовательно, 0,1n > 1, откуда n > 10. Это хуже, чем в первом случае.
Второй . Условие можно записать в виде 2d < n < 2,5d. Значит, 0,5d > 1, то есть d > 2. При d = 3 получаем 6 < n < 10, и наименьшее n равно 7.
ответ
7 человек.
Пошаговое объяснение: я старалься =)