В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
mishkaievlev
mishkaievlev
03.02.2020 20:41 •  Математика

. Известно, что a и B — углы І четверти и sina = 3/5-, cosB=1/3
Вычислите:
sin(a+B)
sin (a-B)
cos(a+B)
cos(a-B)​

Показать ответ
Ответ:
BcezHaNKa
BcezHaNKa
12.10.2020 22:09

В первой четверти все тригонометрический функции положительны:

\cos a=\sqrt{1-\sin^2a} =\sqrt{1-\left(\dfrac{3}{5}\right)^2} =\sqrt{1-\dfrac{9}{25}} =\sqrt{\dfrac{16}{25}} =\dfrac{4}{5}

\sin b=\sqrt{1-\cos^2b} =\sqrt{1-\left(\dfrac{1}{3}\right)^2} =\sqrt{1-\dfrac{1}{9}} =\sqrt{\dfrac{8}{9}} =\dfrac{2\sqrt{2} }{3}

Находим величины:

\sin(a+b)=\sin a\cos b+\cos a\sin b=\dfrac{3}{5} \cdot\dfrac{1}{3}+\dfrac{4}{5}\cdot\dfrac{2\sqrt{2} }{3}=\dfrac{3+8\sqrt{2} }{15}

\sin(a-b)=\sin a\cos b-\cos a\sin b=\dfrac{3}{5} \cdot\dfrac{1}{3}-\dfrac{4}{5}\cdot\dfrac{2\sqrt{2} }{3}=\dfrac{3-8\sqrt{2} }{15}

\cos(a+b)=\cos a\cos b-\sin a\sin b=\dfrac{4}{5} \cdot\dfrac{1}{3}-\dfrac{3}{5}\cdot\dfrac{2\sqrt{2} }{3}=\dfrac{4-6\sqrt{2} }{15}

\cos(a-b)=\cos a\cos b+\sin a\sin b=\dfrac{4}{5} \cdot\dfrac{1}{3}+\dfrac{3}{5}\cdot\dfrac{2\sqrt{2} }{3}=\dfrac{4+6\sqrt{2} }{15}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота