Одинаковыми буквами зашифрованы одинаковые цифры, разными буквами - разные. В данной задаче используются только 6 цифр - от 0 до 5.
Какое число зашифровано за словом «ЛАЙ»?
Правильный ответ находится путем проверки каждого из знаков.
Если от числа отнять равное ему число, получим 0. Начнем решение, используя названный тезис. Л − Л = Й, значит, Й = 0. Самая большая цифра - 5. Из условия задачи известно, что У = 4, значит Е = 5, А = 1. За буквами Л и М зашифрованы оставшиеся цифры 2 и 3. М > Л. Соответственно, М = 3, а Л = 2.
352 − 142 = 210
ответ: 210.
Одинаковые цифры обозначены одинаковыми буквами, разные цифры – разными.
Какое число спряталось за словом «ДАЧА»?
При решении исходим из того, что П Ч = 5, поэтому из-за перехода через десяток А = 2, а Н = 6 и Л = 1.
Д – четное, так как нет перехода через десяток. Д ≠ 0, Д ≠ 2, Д ≠ 6.
Если предположить, что Д = 4, то П = 2 = А, а такой вариант невозможен.
Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.
Например, в человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.
Основные понятия
Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.
Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.
Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.
Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.
Популярные ошибки
Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.
Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.
Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.
В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.
Пошаговое объяснение:
Одинаковыми буквами зашифрованы одинаковые цифры, разными буквами - разные. В данной задаче используются только 6 цифр - от 0 до 5.
Какое число зашифровано за словом «ЛАЙ»?
Правильный ответ находится путем проверки каждого из знаков.
Если от числа отнять равное ему число, получим 0. Начнем решение, используя названный тезис. Л − Л = Й, значит, Й = 0. Самая большая цифра - 5. Из условия задачи известно, что У = 4, значит Е = 5, А = 1. За буквами Л и М зашифрованы оставшиеся цифры 2 и 3. М > Л. Соответственно, М = 3, а Л = 2.
352 − 142 = 210
ответ: 210.
Одинаковые цифры обозначены одинаковыми буквами, разные цифры – разными.
Какое число спряталось за словом «ДАЧА»?
При решении исходим из того, что П Ч = 5, поэтому из-за перехода через десяток А = 2, а Н = 6 и Л = 1.
Д – четное, так как нет перехода через десяток. Д ≠ 0, Д ≠ 2, Д ≠ 6.
Если предположить, что Д = 4, то П = 2 = А, а такой вариант невозможен.
Следовательно, Д = 8, а П = 4.
4126 + 4126 = 8252.
ответ: 8252.
Название
Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.
Например, в человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.
Основные понятия
Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.
Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.
Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.
Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.
Популярные ошибки
Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.
Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.
Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.
В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.