Известно что геометрической проггресии разность четёртого и второго членов равна 18, а разность пятого и третьего членов равна (-36). Найдите первый член данной прогрессии и знаменатель.
возьмем какую-либо вершину. просто выбрали любую. теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. поскольку циклов нет, рано или поздно мы "" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. заметим, что тогда ее степень равна 1. возьмем и выкинем эту вершину и ее единственное ребро из графа. теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). при этом связности мы не испортили, т.к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!
проделаем ту же операцию. таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. рассмотрим граф, в котором осталось 2 вершины. одна из этих вершин имеет степень 1. значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). уберем последнюю "единичную" вершину. у нас осталась одна вершина и ни одного ребра. а значит вершин изначально было на 1 больше, чем ребер. доказано.
Режим чс объявлен на территории волгоградской области из-за природных . огонь бушует в нескольких районах. решение о введении особого режима было принято на заседании оперативного штаба по и ликвидации чс и обеспечению безопасности, сообщается на сайте региональной администрации. напомним, площадь в регионе выросла до нескольких сотен гектаров. причиной возгорания, по словам сотрудников мчс, мог стать так называемый пал сухой травы. из-за сложных метеоусловий в лесу и степи в регионе запретили разводить костры. тем не менее, многие жители это требование игнорируют.
ответ:
пошаговое объяснение:
возьмем какую-либо вершину. просто выбрали любую. теперь "идем" по ребрам графа, не проходя по каждому ребру более 1 раза. поскольку циклов нет, рано или поздно мы "" в какую-нибудь вершину, у которой только 1 ребро, по которому мы в нее зашли. заметим, что тогда ее степень равна 1. возьмем и выкинем эту вершину и ее единственное ребро из графа. теперь кол-во вершин в графе - n-1, а ребер m-1 (m - кол-во ребер в изначальном графе). при этом связности мы не испортили, т.к. у нее было только одно ребро, которое мы выкинули с этой же вершиной!
проделаем ту же операцию. таким образом мы уменьшаем кол-во ребер и вершин каждым шагом на 1. рассмотрим граф, в котором осталось 2 вершины. одна из этих вершин имеет степень 1. значит и вторая тоже (при условии, что нет двойных ребер, но граф связен, поэтому их нет). уберем последнюю "единичную" вершину. у нас осталась одна вершина и ни одного ребра. а значит вершин изначально было на 1 больше, чем ребер. доказано.
p.s.: где достал(а)? какой город? )
подробнее - на -