Найдем точки пересечения линий, для этого приравняем уравнения друг к другу:
x^2 - 1 = 2x + 2;
x^2 - 2x - 3 = 0;
x12 = (2 +- √(4 - 4 * (-3)) / 2 = (2 +- 4) / 2;
x1 = (2 - 4) / 2 = -1; x2 = (2 + 4) / 2 = 3.
Тогда площадь S фигуры ограниченной заданными линиями будет равна:
S = ∫(x^2 - 1) * dx|-1;1 +∫(2x + x) * dx|-1;3 - ∫(x^2 - 1) * dx|1;3
= 2 * (1/3x^3 - 1/2x^2)|0;1 + (x^2 + x)|-1;3 - (1/3x^3 - 1/2x^2)|1;3 = 1 + 8 - 1/6 = 8 5/6.
ответ: искомая площадь, образованная заданными линиями равна 8 5/6.
Пошаговое объяснение:
оно?
2) 1-0,6•x≠1+0,6•x
-0,6•x≠0,6•x
0≠1,2•x
0≠x
Достаточно сравнить x с нулем.
Поскольку x=5>0, то 0<x
Поэтому
1-0,6•x<1+0,6•x
3 а) 12•a-10•b-10•a+6•b=(12-10)•a-(10-6)•b=2•a-4•b=
=2•(a-2•b)=2•(-3,4-2•5,6)=2•(-3,4-11,2)=2•(-14,6)=-29,2
3 б) 4•(3•x-2)+7=4•3•x-4•2+7=12•x-8+7=12•x-1=12•5-1=60-1=59
3 в) 8•x-(2•x+5)+(x-1)=8•x-2•x-5+x-1=7•x-6=7•5-6=35-6=29
4) -5•(0,6•c-1,2)-1,5•c-3=-5•0,6•(c-2)-1,5•c-3=-3•(c-2)-1,5•c-3=
=-3•c-3•(-2)-1,5•c-3=-(3+1,5)•c+6-3=-4,5•c+3=3•(1-1,5•c)=3•[1-1,5•(-4,9)]=
=3•(1+7,35)=3•8,35=25,05
5) 7•x-(5•x-(3•x+y))=7•x-(5•x-3•x-y)=7•x-(2•x-y)=7•x-2•x+y=5•x+y
Найдем точки пересечения линий, для этого приравняем уравнения друг к другу:
x^2 - 1 = 2x + 2;
x^2 - 2x - 3 = 0;
x12 = (2 +- √(4 - 4 * (-3)) / 2 = (2 +- 4) / 2;
x1 = (2 - 4) / 2 = -1; x2 = (2 + 4) / 2 = 3.
Тогда площадь S фигуры ограниченной заданными линиями будет равна:
S = ∫(x^2 - 1) * dx|-1;1 +∫(2x + x) * dx|-1;3 - ∫(x^2 - 1) * dx|1;3
= 2 * (1/3x^3 - 1/2x^2)|0;1 + (x^2 + x)|-1;3 - (1/3x^3 - 1/2x^2)|1;3 = 1 + 8 - 1/6 = 8 5/6.
ответ: искомая площадь, образованная заданными линиями равна 8 5/6.
Пошаговое объяснение:
оно?