В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
ress334
ress334
12.02.2023 06:33 •  Математика

Известно, что точки a, b, c и d — вершины прямоугольника. дано: a(0; 0); b(0; 1); d(6; 0). определи координаты четвёртой вершины c: ;

Показать ответ
Ответ:
yuikire
yuikire
13.08.2022 07:14

ответ:1. На полке в один ряд стоят книги. Энциклопедия стоит пятой слева и семнадцатой справа. Сколько книг на полке?

ответ. 21 книга.

2. Двое поделили между собой 7 рублей, причем один из них получил на 3 рубля больше другого. Сколько кому досталось?

ответ. Одному — 2 рубля, другому — 5 рублей.

3. Число 2002 "симметричное", т.е. читается одинаково слева-направо и справа-налево. Напишите следующее за ним симметричное число.

ответ. 2112.

4. Торговец купил корову за 7 долларов, продал ее за 8, потом вновь купил ту же корову за 9 долларов и опять продал за 10. Какую прибыль он получил?

ответ. 2 доллара.

Пошаговое объяснение:

0,0(0 оценок)
Ответ:
думайй
думайй
29.10.2022 14:01
Выведем уравнение касательной к графику функции y=f (x) в точке с абсциссой х0.  Для наглядности используем график из предыдущего урока 10.3. («Определение производной. Геометрический смысл производной») и выведем уравнение касательной МТ.

Так как точку М мы взяли произвольно, то должны получить уравнение касательной, которое будет справедливо для любой функции y=f (x), имеющей касательную в определенной точке с абсциссой х0.

Итак, любую прямую можно записать в виде y=kx+b, где k — угловой коэффициент прямой. Мы теперь знаем, что в качестве углового коэффициента можно взять f '(х0) — значение производной функции y=f (x) в точке с абсциссой х0. Эта точка является общей точкой для функции и для касательной МТ.

Таким образом, касательная МТ имеет вид: y=f '(х0)·x+b. Осталось определить значение b. Это мы сделаем просто: подставим координаты точки М в последнее равенство, т.е. вместо х запишем х0, а вместо у подставим f (х0). Получаем равенство:

f (х0) =f '(х0)·х0+b.

Отсюда b=f (х0) - f '(х0)·х0. Подставляем это значение b в равенство:  y=f '(х0)·x+b. Тогда:

y =f '(х0)·х+f (х0) - f '(х0)·х0. Упростим.

y=f (х0)+(f '(х0)·х - f '(х0)·х0)  или 

 y=f (х0)+f '(х0)(х - х0).  Это и есть искомое уравнение касательной МТ.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота