Пусть ВМ и АN пересекаются в точке Р. Рассмотрим треугольники ОВМ и OАN: ОВ=ОN, ОМ=ОА, угол АОМ - общий. Треугольники равны по двум сторонам и углу между ними. Из равенства треугольников сОВМледует, что угол равен углу АNO. НО тогда треугольники АВР и РМN равны по стороне и двум прилежащим к ней углам. АВ=MN. так как ОВ-ОА=АВ, MN=ОN-ОМ. А по услвию ОВ=ОN и ОА=ОМ. Если из равных вычесть равные, то остатки тоже равны.Кроме того угол равен углу АNO ( было доказано раньше). Углы АРВ и NPM вертикальные. Они равны. Значит и третьи углы тоже равны между собой. так как сумма углов треугольника 180. Из 180 вычтем два равных, останутся равные. Из равенства треугольников АВР и РМN следует, что АР=РМ. Значит Треугольники ОАР и ОРМ равны по трем сторонам. ОР - общая. ОА=ОМ по условию и АР=РМ доказано выше. Из равенства треугольников следует, что УГОЛ АОР=углу РОМ. значит ОР - биссектриса.
Рассмотри вычисления в строчку и в столбик. 13х54=13х(50+4)=13х50+13х4= Что общего в этих вычислениях? 1) общий первый множитель (число 13) 2) одинаковые результат (число 702)
Чем они различаются? 1) второй множитель (54) во втором и третьем примере по разному предоставлен в виде разрядных слагаемых (54=50+4). 2) первый пример (13х54=702) решается в одно действие; второй - в два (13х(50+4) = 13*54=792); третий - в три действия (13х50 (первое действие умножение)+13х4 = 650 + 13х4 (второе действие умножение) = 650+52 (третье действия сумма двух произведений)=702)
Рассмотрим треугольники ОВМ и OАN: ОВ=ОN, ОМ=ОА, угол АОМ - общий.
Треугольники равны по двум сторонам и углу между ними.
Из равенства треугольников сОВМледует, что угол
равен углу АNO.
НО тогда треугольники АВР и РМN равны по стороне и двум прилежащим к ней углам.
АВ=MN. так как ОВ-ОА=АВ, MN=ОN-ОМ. А по услвию ОВ=ОN и ОА=ОМ.
Если из равных вычесть равные, то остатки тоже равны.Кроме того угол
равен углу АNO ( было доказано раньше). Углы АРВ и NPM вертикальные. Они равны. Значит и третьи углы тоже равны между собой. так как сумма углов треугольника 180.
Из 180 вычтем два равных, останутся равные.
Из равенства треугольников АВР и РМN следует, что АР=РМ.
Значит Треугольники ОАР и ОРМ равны по трем сторонам. ОР - общая. ОА=ОМ по условию и АР=РМ доказано выше.
Из равенства треугольников следует, что УГОЛ АОР=углу РОМ.
значит ОР - биссектриса.
13х54=13х(50+4)=13х50+13х4=
Что общего в этих вычислениях?
1) общий первый множитель (число 13)
2) одинаковые результат (число 702)
Чем они различаются?
1) второй множитель (54) во втором и третьем примере по разному предоставлен в виде разрядных слагаемых (54=50+4).
2) первый пример (13х54=702) решается в одно действие; второй - в два (13х(50+4) = 13*54=792); третий - в три действия (13х50 (первое действие умножение)+13х4 = 650 + 13х4 (второе действие умножение) = 650+52 (третье действия сумма двух произведений)=702)