В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
YaroslavShevchuk
YaroslavShevchuk
15.03.2022 21:04 •  Математика

Как доказать лемму a/(b+c)+b/(a+c)+c/(a+b)> = 3/2

Показать ответ
Ответ:
Angelamur
Angelamur
23.06.2020 05:24
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{3}{2}
\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1 \geq \frac{3}{2}+3
\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b} \geq \frac{9}{2}
(a+b+c)(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}) \geq \frac{9}{2}
(\frac{a+b}{2}+\frac{a+c}{2}+\frac{b+c}{2})(\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{a+c}) \geq \\\\3*\sqrt[3] {\frac{a+b}{2}*\frac{a+b}{2}*\frac{b+c}{2}}*3\sqrt[3] {\frac{2}{a+b}*\frac{2}{b+c}*\frac{2}{a+c}}=\\\\9 \geq \frac{9}{2}
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота