Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.
Пошаговое объяснение:
Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.
Заметим, что при выборе любого квадрата 2*2 в любом случае участвует центральная клетка. Значит, количество раз, когда квадрат 2*2 выбирается, должно в точности быть равным числу в середине квадрата 3*3. Всего возможно 4 выбора квадрата 2*2: 1) примыкает к левому верхнему углу квадрата 3*3 2) примыкает к правому верхнему углу квадрата 3*3 3) примыкает к левому нижнему углу квадрата 3*3 4) примыкает к правому нижнему углу квадрата 3*3 При этом если выбран какой-то квадрат 2*2, то под ним находится ровно 1 угол квадрата 3*3. То есть остальные 3 угла не контактируют с квадратом 2*2. Это значит, что число в углу квадрата 3*3 должно характеризовать количество раз, когда был выбран квадрат 2*2, который накладывается на этот угол. Например, выбрали квадрат 2*2, который примыкает к левому верхнему углу. Левый нижний, правый нижний и правый верхний углы при этом не изменяются. Значит, суммарное количество раз, когда выбирается квадрат 2*2, равно сумме чисел по углам квадрата 3*3. 4+5+6+7=22. Но ранее было сказано, что количество квадратов 2*2 равно числу в середине квадрата 3*3, то есть 18. 22≠18 - противоречие. Значит, такого квадрата 3*3 достичь невозможно.
Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.
Пошаговое объяснение:
Поскольку пирамида может иметь в основании и треугольник, и квадрат, и пятиугольник, и т.д., то условимся называть пирамиду n-угольной, тогда справедливо:
У n-угольной пирамиды:
n+1 вершин (вершины основания и вершина пирамиды);
n+1 граней (боковые грани + основание);
2n ребер (ребра основания + ребра боковых граней).
У любой пирамиды все грани, кроме основания - треугольники. Основание тоже треугольник только в треугольной пирамиде (т.н. тэтраэдр)
Например: если в основании треугольник, то 4 вершины, 4 грани, 6 рёбер; в основании квадрат - 5 вершин, 5 граней, 8 рёбер и т.д.
Всего возможно 4 выбора квадрата 2*2:
1) примыкает к левому верхнему углу квадрата 3*3
2) примыкает к правому верхнему углу квадрата 3*3
3) примыкает к левому нижнему углу квадрата 3*3
4) примыкает к правому нижнему углу квадрата 3*3
При этом если выбран какой-то квадрат 2*2, то под ним находится ровно 1 угол квадрата 3*3. То есть остальные 3 угла не контактируют с квадратом 2*2. Это значит, что число в углу квадрата 3*3 должно характеризовать количество раз, когда был выбран квадрат 2*2, который накладывается на этот угол.
Например, выбрали квадрат 2*2, который примыкает к левому верхнему углу. Левый нижний, правый нижний и правый верхний углы при этом не изменяются.
Значит, суммарное количество раз, когда выбирается квадрат 2*2, равно сумме чисел по углам квадрата 3*3.
4+5+6+7=22. Но ранее было сказано, что количество квадратов 2*2 равно числу в середине квадрата 3*3, то есть 18. 22≠18 - противоречие. Значит, такого квадрата 3*3 достичь невозможно.