В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
коля860
коля860
09.04.2021 05:43 •  Математика

Как найти координаты точки пересечения высоты и меридианы в треугольнике?

Показать ответ
Ответ:
Серый43а
Серый43а
20.06.2020 04:48
Если заданы координаты вершин А,В,С
Находим уравнение сторон АВ, ВС, АС через уравнение пряммой что проходит через две точки
\frac{y-y_0}{y_1-y_0}=\frac{x-x_0}{x_1-x_0}
либо через систему двух линейных уравней используя формулу пряммой с угловым коэффициентом
y_1=kx_1+b;y_2=kx_2+b;y=kx+b
(нужно про себя отдельно віделить возможный уникальный случай когда одна из пряммых получается x=c, где с - некоторое действительное число)

Дальше используя признак перпендикулярности пряммых, по угловому коэфициенту пряммой стороны k находим углововй коєфициент высоты опущеной на эту сторону как (-1/k)
k_1k_2=-1 - признак перпендикулярности на плоскости

А дальше используя координаты вершины с которой опущена высота ,
и угловой коэфициент через формулу пряммой с угловым коэфициентом находим уравнение высоты.

Решив систему уравнений, где уравнения - уравнения формул задающих пряммые высот - найдем точку пересечения высот

2. Для медиан.
Находим середины сторон по формулах координат середины отрезки
x_c=\frac{x_1+x_2}{2}; y_c=\frac{y_1+y_2}{2}
Потом используем формулу пряммой проходящей через две тчоки либо системой линейных уравнеий через формулу пряммой с угловым коэффициентом, имея координаты вершины треугольника и соотвестующей середины противоположной стороны - уравнения медиан

Имея уравнеия медиан через систему уравнений находим точку пересечения медиан.
(Либо найдя одну из середин сторон и координаты соотвествующей вершины памятуя что медианы делятся точкой пересечения в отношении 2:1, использовать формулу координат точки делящей отрезок в заданном отношении - но это уже на любителя)
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота