В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
zver35
zver35
27.04.2021 14:31 •  Математика

Как найти область определения функции y=3x-2x^2 (под корнем)?

Показать ответ
Ответ:
Xzkto666
Xzkto666
27.06.2020 01:33
Задание. Найти область определения функции y = √(3x-2x^2).
    Решение:
Подкоренное выражение должен принимать неотрицательные значения, т.е. 3x-2x^2 \geq 0. Для удобства умножим обе части неравенства на (-1), при этом знак неравенство меняется на противоположный, т.е. 2x^2-3x \leq 0.
Неравенство будем решать методом интервалов.
Приравниваем к нулю. 2x^2-3x=0;\,\,\,\,\,\,x(2x-3)=0. Произведение равно нулю, если хотя бы один из множителей обращается в нуль, т.е. x_1=0 и 2x-3=0  откуда  x=1,5.

Знаки на интервалах. 
Определим знак справа, для этого возьмём любое значение х>1.5, т.е., например, возьмём х=2. Подставив в левой части неравенства, получим 2\cdot2^2-3\cdot2=8-6=2\ \textgreater \ 0, следовательно, справа будет знак "+" дальше знаки чередуются с "-" и "+". Искомый промежуток x \in [0;1.5].

Область определения функции: D(f)=[0;1.5].

ответ: D(f)=[0;1.5].

Как найти область определения функции y=3x-2x^2 (под корнем)?
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота