Стародавні греки встановили надзвичайно цікавий факт, що існує всього п’ять правильних опуклих многогранників різної форми (тетраедр, гексаедр, октаедр, додекаедр, ікосаедр).
Правильні многогранники, крім куба, мали невелике поширення в практиці. Вони рідко зустрічаються в архітектурі, у живопису, проте іноді вони стають у пригоді.
Наведемо приклад. Легко впевнитись, що вершини кожного з п’яти видів правильних многогранників, в тому числі й ікосаедра, лежать на кульовій поверхні. Дванадцять вершин ікосаедра – це максимальне число точок, які можна нанести на поверхню кулі так, щоб відстань між будь-якими двома сусідніми точками була однакова.
Цю властивість ікосаедра застосувала одна з американських фірм для виготовлення баскетбольних м’ячів. На поверхні сферичної основи встановили 12 точок, рівномірно розділених по каркасу (вершини ікосаедра). Машина намотує нейлонові нитки по колам великих кругів, які проходять через кожну пару зазначених точок. Коли таке намотування буде повторено багато разів, причому, починаючи щоразу з різних пар точок, камера буде покрита цілком рівномірно, що забезпечить однакову міцність кожного її квадратного сантиметра.
Поскольку при выкладывании по 13 и по 14 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 13 и на 14 с остатками.
Остаток от деления любого числа на 13 не может быть больше 12. По условию это число на 11 больше, чем остаток от деления на 14. Но остаток от деления на 14 тоже не равен нулю. Значит, остаток от деления на 13 может быть равен только 12. А остаток от деления на 14 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 13 с остатком 12 и на 14 с остатком 1. Проверив все числа в пределах 100, делящиеся на 14 с остатком 1, получим ответ: 77 плиток.
Стародавні греки встановили надзвичайно цікавий факт, що існує всього п’ять правильних опуклих многогранників різної форми (тетраедр, гексаедр, октаедр, додекаедр, ікосаедр).
Правильні многогранники, крім куба, мали невелике поширення в практиці. Вони рідко зустрічаються в архітектурі, у живопису, проте іноді вони стають у пригоді.
Наведемо приклад. Легко впевнитись, що вершини кожного з п’яти видів правильних многогранників, в тому числі й ікосаедра, лежать на кульовій поверхні. Дванадцять вершин ікосаедра – це максимальне число точок, які можна нанести на поверхню кулі так, щоб відстань між будь-якими двома сусідніми точками була однакова.
Цю властивість ікосаедра застосувала одна з американських фірм для виготовлення баскетбольних м’ячів. На поверхні сферичної основи встановили 12 точок, рівномірно розділених по каркасу (вершини ікосаедра). Машина намотує нейлонові нитки по колам великих кругів, які проходять через кожну пару зазначених точок. Коли таке намотування буде повторено багато разів, причому, починаючи щоразу з різних пар точок, камера буде покрита цілком рівномірно, що забезпечить однакову міцність кожного її квадратного сантиметра.
Поскольку при выкладывании по 13 и по 14 плиток в ряд прямоугольников не получается, а остаются неполные ряды, то количество плиток делится на 13 и на 14 с остатками.
Остаток от деления любого числа на 13 не может быть больше 12. По условию это число на 11 больше, чем остаток от деления на 14. Но остаток от деления на 14 тоже не равен нулю. Значит, остаток от деления на 13 может быть равен только 12. А остаток от деления на 14 равен 1.
Общее количество плиток меньше 100, иначе их хватило бы на квадратную площадку со стороной в 10 плиток. Среди чисел меньше 100 надо найти такое, которое делится на 13 с остатком 12 и на 14 с остатком 1. Проверив все числа в пределах 100, делящиеся на 14 с остатком 1, получим ответ: 77 плиток.
Пошаговое объяснение: