т.к. у нас два сундук с четным количеством монет и два с нечетным, а за операцию каждый сундук меняет свою четность, то всегда будет два "нечетных" сундука
так как на одной итерации мы добавляем в три из четырех сундуков монеты, то только в одном сундуке мы можем добиться 0
значит, с учетом двух утверждений картина с наибольшим количеством монет могла выглядеть следующим образом: 0 1 1 1108
на предыдущем шаге должно было быть 3 0 0 1107 - но такого быть не могло, согласно утверждениям выше
следующий вариант, где монет меньше, чем 1108, это 1107
этого варианта достичь можно, пользуясь следующим алгоритмом:
четвертый сундук не трогаем, а с остальными повторяем следующую операцию:
берем сундук с наибольшим количеством монет и проводим операцию столько раз, сколько нужно, чтобы в сундуке осталось меньше трех монет
1. 52 % белые = 52:100=13/25 2. Известно, что количество шариков не более 70, значит необходимо найти целое натуральное число от 0 до 70, чтобы было кратно 25. Такие числа 25 и 50. 2. После того, как достали 3 шарика, количество белых и черных шаров стало одинаковым, значит число должно быть кратным 2 (ровно половина белых и черных шариков). 50-3=47 – не подходит т.к. оно не делится на 2 (нечетное число). 25-3=22, подходит 22:2=11 шариков черных и белых осталось, после того, как вытащили 3 шарика. 3) Найдем количество белых шариков, которые изначально были в ящике: 25*13/25= 13 белых шариков, тогда черных 25-13=12 черных шариков. 13-12=1 – количество белых шариков больше черных. (13-11=2 белых шарика достали и 12-11=1 черный шарик достали.) ответ: Первоначально белых шариков было на 1 больше, чем черных.
1107
Пошаговое объяснение:
т.к. у нас два сундук с четным количеством монет и два с нечетным, а за операцию каждый сундук меняет свою четность, то всегда будет два "нечетных" сундука
так как на одной итерации мы добавляем в три из четырех сундуков монеты, то только в одном сундуке мы можем добиться 0
значит, с учетом двух утверждений картина с наибольшим количеством монет могла выглядеть следующим образом: 0 1 1 1108
на предыдущем шаге должно было быть 3 0 0 1107 - но такого быть не могло, согласно утверждениям выше
следующий вариант, где монет меньше, чем 1108, это 1107
этого варианта достичь можно, пользуясь следующим алгоритмом:
четвертый сундук не трогаем, а с остальными повторяем следующую операцию:
берем сундук с наибольшим количеством монет и проводим операцию столько раз, сколько нужно, чтобы в сундуке осталось меньше трех монет
выглядит это так:
111 222 333 444
222 333 0 555
333 0 111 666
0 111 222 777
74 185 0 851
135 2 61 912
0 47 106 957
35 82 1 992
62 1 28 1019
2 21 48 1039
18 37 0 1055
30 1 12 1067
0 11 22 1077
7 18 1 1084
13 0 7 1090
1 4 11 1094
4 7 2 1097
6 1 4 1099
0 3 6 1101
2 5 0 1103
3 2 1 1104
0 3 2 1105
1 0 3 1106
2 1 0 1107
и он возьмет себе 1107 монет
2. Известно, что количество шариков не более 70, значит необходимо найти целое натуральное число от 0 до 70, чтобы было кратно 25.
Такие числа 25 и 50.
2. После того, как достали 3 шарика, количество белых и черных шаров стало одинаковым, значит число должно быть кратным 2 (ровно половина белых и черных шариков).
50-3=47 – не подходит т.к. оно не делится на 2 (нечетное число).
25-3=22, подходит 22:2=11 шариков черных и белых осталось, после того, как вытащили 3 шарика.
3) Найдем количество белых шариков, которые изначально были в ящике:
25*13/25= 13 белых шариков, тогда черных 25-13=12 черных шариков.
13-12=1 – количество белых шариков больше черных.
(13-11=2 белых шарика достали и 12-11=1 черный шарик достали.)
ответ: Первоначально белых шариков было на 1 больше, чем черных.