В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
zikov1995123
zikov1995123
29.11.2020 17:57 •  Математика

Как посчитать предел lim = (sin(2*x^2))/(4*x^2) х стремится к бесконечности

Показать ответ
Ответ:
farid32222245
farid32222245
07.10.2020 06:44
Если икс стремится к бесконечности
\lim_{x \to \infty} \frac{sin(2*x^2) } {4*x^2}
то тут ситуация такая. В знаменателе ограниченная функция, синус изменяется от плюс до минус единицы. Числитель без вариантов стремится к бесконечности. А их отношение, значит, к нулю:
\lim_{x \to \infty} \frac{sin(2*x^2) } {4*x^2} = \frac{+/-1}{\infty} =0
Другое дело, если икс стремится к нулю. Тут нужен будет Первый замечательный предел:
\lim_{x \to \inft0} \frac{sin(2*x^2) } {4*x^2} = \frac{1}{4} \lim_{x \to \inft0} \frac{2sin(x^2)*cos(x^2) } {x^2} = \\ \\ = \frac{1}{2} \lim_{x \to \inft0} cos(x^2) \lim_{x \to \inft0} \frac{sin(x^2)} {x^2}= \frac{1}{2} *1*1=\frac{1}{2}
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота