"Не во всех столбцах не все клетки черные" р а в н о с и л ь н о "Не во всех столбцах есть белые клетки"
Значит в каких-то столбцах должны быть ТОЛЬКО чёрные клетки.
При этом, например, комбинация:
Ч Б Б Ч Б Ч Ч Б Б – удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждения (a), (б) и (г) – ложные.
Комбинация:
Ч Б Б Ч Б Ч Ч Ч Б – тоже удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждение (в) – ложное.
Поскольку не во всех столбцах есть белые клетки, то значит в каком-то столбце белых клеток – нет, стало быть всегда будет такой столбец, в котором нет белых клеток, т.е. ЧЁРНЫЙ стобец, а поэтому, утверждение (д) – ВЕРНОЕ.
Тут нужно искать инварианты. В первом автомате (а + 1) - (в + 1) = а - в - разность постоянна. Во втором автомате (а/2 - в/2) = (а - в)/2 - разность делится пополам. В третьем автомате разности складываются: а - с = (а - в) + (в - с).
У нас есть карточка (5, 27). В первом автомате (5, 27) > (6, 28). Во втором автомате (6, 28) > (3, 14), В первом автомате (3, 14) > (28, 39), В третьем автомате (6, 28),(28, 39) > (6, 39).
Мы имеем набор карточек (5, 27), (6, 28), (3, 14), (28, 39), (6, 39). Посчитаем разность чисел на каждой из них, получим ряд 22; 22; 11; 11; 33. Очевидно, что общим является делимость на 11.
Разность числе на требуемой карточке равна 2016 - 1 = 2015. но она на 11 не делится. Значит, такую карточку получить нельзя.
р а в н о с и л ь н о
"Не во всех столбцах есть белые клетки"
Значит в каких-то столбцах должны быть ТОЛЬКО чёрные клетки.
При этом, например, комбинация:
Ч Б Б
Ч Б Ч
Ч Б Б – удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждения (a), (б) и (г) – ложные.
Комбинация:
Ч Б Б
Ч Б Ч
Ч Ч Б – тоже удовлетворительная,
здесь "не во всех столбцах есть белые клетки"
значит утверждение (в) – ложное.
Поскольку не во всех столбцах есть белые клетки, то значит в каком-то столбце белых клеток – нет, стало быть всегда будет такой столбец, в котором нет белых клеток, т.е. ЧЁРНЫЙ стобец,
а поэтому, утверждение (д) – ВЕРНОЕ.
О т в е т : (д) есть столбец из черных клеток.
В первом автомате (а + 1) - (в + 1) = а - в - разность постоянна.
Во втором автомате (а/2 - в/2) = (а - в)/2 - разность делится пополам.
В третьем автомате разности складываются: а - с = (а - в) + (в - с).
У нас есть карточка (5, 27).
В первом автомате (5, 27) > (6, 28).
Во втором автомате (6, 28) > (3, 14),
В первом автомате (3, 14) > (28, 39),
В третьем автомате (6, 28),(28, 39) > (6, 39).
Мы имеем набор карточек (5, 27), (6, 28), (3, 14), (28, 39), (6, 39).
Посчитаем разность чисел на каждой из них, получим ряд 22; 22; 11; 11; 33. Очевидно, что общим является делимость на 11.
Разность числе на требуемой карточке равна 2016 - 1 = 2015. но она на 11 не делится. Значит, такую карточку получить нельзя.
ответ, Нельзя.