Существуют такие формы записи уравнения прямой в пространстве:
1) {A1x+B1y+C1z+D1=0(P1)A2x+B2y+C2z+D2=0(P2)− общее уравнение прямой L в пространстве, как линии пересечения двух плоскостей P1 и P2.
pryamayavprostr1
2) x−x0m=y−y0n=z−z0p− каноническое уравнение прямой L, которая проходит через точку M(x0,y0,z0) параллельно вектору S⎯⎯⎯=(m,n,p). Вектор S⎯⎯⎯ является направляющим вектором прямой L.
pryamayavprostr2
3) x−x1x2−x1=y−y1y2−y1=z−z1z2−z1− уравнение прямой, которая проходит через две точки A(x1,y1,z1) и B(x2,y2,z2).
4) Приравнивая каждую из частей канонического уравнения 2 к прараметру t, получаем параметрическое уравнение прямой:
⎧⎩⎨⎪⎪x=x0+mty=y0+ntz=z0+pt
Расположение двух прямых в пространстве.
Пусть L1: x−x1m1=y−y1n1=z−z1p1 S⎯⎯⎯1=(m1,n1,p1);
L2: x−x2m2=y−y2n2=z−z2p2, S⎯⎯⎯2=(m2,n2,p2).
Условие параллельности двух прямых: Прямые L1 и L2 параллельны тогда и только тогда, когда S⎯⎯⎯1∥S⎯⎯⎯2⇔ m1m2=n1n2=p1p2.
Условие перпендикулярности двух прямых: L1⊥L2⇔ S⎯⎯⎯1⊥S⎯⎯⎯2⇔ m1⋅m2+n1⋅n2+p1⋅p2=0.
Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.
Пусть прямая L задана уравнением x−x0m=y−y0n=z−z0p, следовательно S⎯⎯⎯=(m,n,p). Пусть также M2=(x2,y2,z2)− произвольная точка, принадлежащая прямой L. Тогда расстояние от точки M1=(x1,y1,z1) до прямой L можно найти по формуле:
d(M1,L)=|[M1M2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,S⎯⎯⎯]||S⎯⎯⎯|.
dist
Примеры.
2.198. Написать каноническое уравнение прямой, проходящей через точку M0(2,0,−3) параллельно:
а) вектору q(2,−3,5);
б) прямой x−15=y+22=z+1−1;
в) оси OX;
д) прямой {3x−y+2z−7=0,x+3y−2z−3=0;
е) прямой x=−2+t,y=2t,z=1−12t.
Решение.
а) Воспользуемся формулой (2) уравнения прямой в пространстве:
x−x0m=y−y0n=z−z0p− каноническое уравнение прямой L, которая проходит через точку M(x0,y0,z0) параллельно вектору S⎯⎯⎯=(m,n,p).
По условию M0(2,0,−3) и S⎯⎯⎯=q(2,−3,5).
Таким образом, x−22=y−0−3=z−(−3)5⇒x−22=y−3=z+35.
ответ: x−22=y−3=z+35.
б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой x−15=y+22=z+1−1 имеет координаты S⎯⎯⎯(5,2,−1). Далее, находим уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(5,2,−1) как и в пункте а):
x−25=y−02=z−(−3)−1⇒x−25=y2=z+3−1.
ответ: x−25=y2=z+3−1.
в) ось OX имеет направляющий вектор i=(1,0,0). Таким образом, ищем уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору i(1,0,0):
x−21=y−00=z−(−3)0⇒x−21=y0=z+30.
ответ: x−21=y0=z+30.
д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей, поэтому Направляющий вектор прямой
{3x−y+2z−7=0,x+3y−2z−3=0; можно найти как векторное произведение нормалей заданных плоскостей.
Для плоскости P1: 3x−y+2z−7=0 нормальный вектор имеет координаты N1(3,−1,2);
для плосости P2: x+3y−2z−3, нормальный вектор имеет координаты N2(1,3,−2).
Отсюда находим направляющий вектор S⎯⎯⎯(1,2,−12). Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): S⎯⎯⎯1(2,4,−1).
Далее нам необходимо найти уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(2,4,−1):
x−22=y−04=z−(−3)−1⇒x−22=y4=z+3−1.
ответ: x−22=y4=z+3−1.
2.199(a). Написать уравнение прямой, проходящей через две заданные точки M1(1,−2,1) и M2(3,1,−1).
Решение.
Воспользуемся формулой (3) уравнения прямой в пространстве:
x−x1x2−x1=y−y1y2−y1=z−z1z2−z1− уравнение прямой, которая проходит через две точки A(x1,y1,z1) и B(x2,y2,z2).
Подставляем заданные точки:
x−13−1=y+21+2=z−1−1−1⇒ x−12=y+23=z−1−2.
ответ: x−12=y+23=z−1−2.
2.204. Найти расстояние между параллельными прямыми
x−23=y+14=z2 и x−73=y−14=z−32.
Решение.
Расстояние между параллельными прямыми L1 и L2 равно расстоянию от произвольной точки прямой L1 до прямой L2. Следовательно, его можно найти по формуле
Даны координаты вершин пирамиды АВСD :
А(-5;-1;8), В(2;3;1), С(4;1;-2), D(6;3;7).
Найти: 1. Длину | вектор |АВ| = √((2-(-5))² + (3-(-1))² + (1-8)²) =
√(49 + 16 + 49) = √114 ≈ 10,67708.
2. Величину угла между векторами АВ и АС.
Вектор АВ = (7; 4; -7) определён в п. 1. Модуль = √114 ≈ 10,67708.
Вектор АС = (9; 2; -10), √(81+4+100) = √185 ≈ 13,60147.
cos(AB_AC) = (7*9+4*2+(-7)*(-10))/(√114*√185) = 141/√21090 =
= 141/145,223965 ≈ 0,970914133 .
Угол равен arc cos (141/√21090) = 0,241777 радиан или 13,85278 градуса.
3. Площадь грани АСD,
Находим векторы АС и АD.
Вектор АC = (9; 2; -10) определён в п. 1. Модуль = √185 ≈ 13,60147.
Вектор АD = (11; 4; -1), √(121+16+1) = √138 ≈ 11,74734.
Площадь грани ACD равна половине модуля векторного произведения: S = (1/2)|AC*AD|.
i j k| i j
9 2 -10| 9 2
11 4 -1| 11 4 = -2i - 110j + 36k + 9j + 40i - 22k =
= 38i - 101j + 14k = (38; -101; 14).
Модуль равен √(38² + (-101)² + 14²) = √11841 ≈ 108,8163591 .
Площадь S = (1/2)*√11841 = 54,40817953 .
4. Объем АВСD(объем пирамиды ).
Объём пирамиды V = (1/6)*|(ABxAC)*AD|.
Вектор АВ = (7; 4; -7) определён в п. 1. Модуль = √114 ≈ 10,67708.
Вектор АС = (9; 2; -10), √(81+4+100) = √185 ≈ 13,60147. (см. п. 2).
i j k| i j
7 4 -7| 7 4
9 2 -10| 9 2 = -40i - 63j + 14k + 70j +1 4i - 36k =
= -26i + 7j - 22k = (-26; 7; -22).
Модуль равен √((-26)² + 7² + (-22)²) = √1209 ≈ 34,7706773 .
5. Уравнение стороны ВС. Вектор ВС = (2; -2; -3).
(x - 2)/2 = (y - 3)/(-2) = (z - 1)/(-3).
6. Уравнение грани АВD по точкам А(-5;-1;8), В(2;3;1), D(6;3;7).
Для составления уравнения плоскости используем формулу:
x - xA y - yA z - zA
xB - xA yB - yA zB - zA
xC - xA yC - yA zC - zA
= 0
Подставим данные и упростим выражение:
x - (-5) y - (-1) z - 8
2 - (-5) 3 - (-1) 1 - 8
6 - (-5) 3 - (-1) 7 - 8
= 0
x - (-5) y - (-1) z - 8
7 4 -7
11 4 -1
= 0
x - (-5) 4·(-1)-(-7)·4 - y - (-1) 7·(-1)-(-7)·11 + z - 8 7·4-4·11 = 0
24 x - (-5) + (-70) y - (-1) + (-16) z - 8 = 0
24x - 70y - 16z + 178 = 0 или, сократив на 2
12x - 35y - 8z + 89 = 0 .
7.Уравнение высоты СН к грани АВD .
Нормальный вектор плоскости АВД принимаем из её уравнения:
АВД = (12; -35; -8).
Тогда уравнение высоты СН:
(x - 4)/12 = (y - 1)/(-35) = (z + 2)/(-8).
Существуют такие формы записи уравнения прямой в пространстве:
1) {A1x+B1y+C1z+D1=0(P1)A2x+B2y+C2z+D2=0(P2)− общее уравнение прямой L в пространстве, как линии пересечения двух плоскостей P1 и P2.
pryamayavprostr1
2) x−x0m=y−y0n=z−z0p− каноническое уравнение прямой L, которая проходит через точку M(x0,y0,z0) параллельно вектору S⎯⎯⎯=(m,n,p). Вектор S⎯⎯⎯ является направляющим вектором прямой L.
pryamayavprostr2
3) x−x1x2−x1=y−y1y2−y1=z−z1z2−z1− уравнение прямой, которая проходит через две точки A(x1,y1,z1) и B(x2,y2,z2).
4) Приравнивая каждую из частей канонического уравнения 2 к прараметру t, получаем параметрическое уравнение прямой:
⎧⎩⎨⎪⎪x=x0+mty=y0+ntz=z0+pt
Расположение двух прямых в пространстве.
Пусть L1: x−x1m1=y−y1n1=z−z1p1 S⎯⎯⎯1=(m1,n1,p1);
L2: x−x2m2=y−y2n2=z−z2p2, S⎯⎯⎯2=(m2,n2,p2).
Условие параллельности двух прямых: Прямые L1 и L2 параллельны тогда и только тогда, когда S⎯⎯⎯1∥S⎯⎯⎯2⇔ m1m2=n1n2=p1p2.
Условие перпендикулярности двух прямых: L1⊥L2⇔ S⎯⎯⎯1⊥S⎯⎯⎯2⇔ m1⋅m2+n1⋅n2+p1⋅p2=0.
Угол между прямыми:
cos(L1,L2)ˆ= S⎯⎯⎯1⋅S⎯⎯⎯2|S⎯⎯⎯1|⋅|S⎯⎯⎯2|=m1⋅m2+n1⋅n2+p1⋅p2m21+n21+p21√⋅m22+n22+p22√.
ugol2
Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.
Пусть прямая L задана уравнением x−x0m=y−y0n=z−z0p, следовательно S⎯⎯⎯=(m,n,p). Пусть также M2=(x2,y2,z2)− произвольная точка, принадлежащая прямой L. Тогда расстояние от точки M1=(x1,y1,z1) до прямой L можно найти по формуле:
d(M1,L)=|[M1M2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,S⎯⎯⎯]||S⎯⎯⎯|.
dist
Примеры.
2.198. Написать каноническое уравнение прямой, проходящей через точку M0(2,0,−3) параллельно:
а) вектору q(2,−3,5);
б) прямой x−15=y+22=z+1−1;
в) оси OX;
д) прямой {3x−y+2z−7=0,x+3y−2z−3=0;
е) прямой x=−2+t,y=2t,z=1−12t.
Решение.
а) Воспользуемся формулой (2) уравнения прямой в пространстве:
x−x0m=y−y0n=z−z0p− каноническое уравнение прямой L, которая проходит через точку M(x0,y0,z0) параллельно вектору S⎯⎯⎯=(m,n,p).
По условию M0(2,0,−3) и S⎯⎯⎯=q(2,−3,5).
Таким образом, x−22=y−0−3=z−(−3)5⇒x−22=y−3=z+35.
ответ: x−22=y−3=z+35.
б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой x−15=y+22=z+1−1 имеет координаты S⎯⎯⎯(5,2,−1). Далее, находим уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(5,2,−1) как и в пункте а):
x−25=y−02=z−(−3)−1⇒x−25=y2=z+3−1.
ответ: x−25=y2=z+3−1.
в) ось OX имеет направляющий вектор i=(1,0,0). Таким образом, ищем уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору i(1,0,0):
x−21=y−00=z−(−3)0⇒x−21=y0=z+30.
ответ: x−21=y0=z+30.
д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей, поэтому Направляющий вектор прямой
{3x−y+2z−7=0,x+3y−2z−3=0; можно найти как векторное произведение нормалей заданных плоскостей.
Для плоскости P1: 3x−y+2z−7=0 нормальный вектор имеет координаты N1(3,−1,2);
для плосости P2: x+3y−2z−3, нормальный вектор имеет координаты N2(1,3,−2).
Находим векторное произведение:
[N1,N2]=∣∣∣∣∣i31j−13k2−2∣∣∣∣∣=i(2−6)−j(−6−2)+k(9+1)=−4i+8j+10k.
Таким образом, направляющий вектор прямой {3x−y+2z−7=0,x+3y−2z−3=0; имеет координаты S⎯⎯⎯(−4,8,10).
Далее нам необходимо найти уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(−4,8,10):
x−2−4=y−08=z−(−3)10⇒x−2−4=y8=z+310.
ответ: x−2−4=y8=z+310.
{jumi[*4]}
е) Найдем направляющий вектор прямой x=−2+t,y=2t,z=1−12t. Для этого запишем уравнение этой прямой в каноническом виде:
⎧⎩⎨⎪⎪x=−2+t,y=2t,z=1−12t⇒ ⎧⎩⎨⎪⎪⎪⎪t=x+2,t=y2,t=z−1−12 ⇒x+21=y2=z−1−12.
Отсюда находим направляющий вектор S⎯⎯⎯(1,2,−12). Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): S⎯⎯⎯1(2,4,−1).
Далее нам необходимо найти уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(2,4,−1):
x−22=y−04=z−(−3)−1⇒x−22=y4=z+3−1.
ответ: x−22=y4=z+3−1.
2.199(a). Написать уравнение прямой, проходящей через две заданные точки M1(1,−2,1) и M2(3,1,−1).
Решение.
Воспользуемся формулой (3) уравнения прямой в пространстве:
x−x1x2−x1=y−y1y2−y1=z−z1z2−z1− уравнение прямой, которая проходит через две точки A(x1,y1,z1) и B(x2,y2,z2).
Подставляем заданные точки:
x−13−1=y+21+2=z−1−1−1⇒ x−12=y+23=z−1−2.
ответ: x−12=y+23=z−1−2.
2.204. Найти расстояние между параллельными прямыми
x−23=y+14=z2 и x−73=y−14=z−32.
Решение.
Расстояние между параллельными прямыми L1 и L2 равно расстоянию от произвольной точки прямой L1 до прямой L2. Следовательно, его можно найти по формуле
d(L1,L2)=d(M1,L2)=|[M1M2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,S⎯⎯⎯]||S⎯⎯⎯|,
где M1− произвольная точка прямой L1, M2−произвольная точка прямой L2, S⎯⎯⎯− направляющий вектор прямой L2.
Из канонических уравнений прямых берем точки M1=(2,−1,0)∈L1, M2=(7,1,3)∈L2, $\overline S=(3, 4, 2).$
Отсюда находим M1M2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=(7−2,1−(−1),3−0)=(5,2,3);