В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
тупикл12
тупикл12
28.03.2023 05:21 •  Математика

Как решить номер 735 математика

Показать ответ
Ответ:
vaki3
vaki3
28.11.2022 19:34

Даны координаты вершин пирамиды АВСD :

А(-5;-1;8), В(2;3;1), С(4;1;-2), D(6;3;7).

Найти: 1. Длину | вектор |АВ| = √((2-(-5))² + (3-(-1))² + (1-8)²) =

            √(49 + 16 + 49) = √114 ≈ 10,67708.  

2. Величину угла  между векторами АВ и АС.

Вектор АВ = (7; 4; -7) определён в п. 1. Модуль = √114 ≈ 10,67708.

Вектор АС = (9; 2; -10), √(81+4+100) = √185 ≈ 13,60147.

cos(AB_AC) = (7*9+4*2+(-7)*(-10))/(√114*√185) = 141/√21090 =  

             = 141/145,223965 ≈ 0,970914133 .

Угол равен arc cos (141/√21090) = 0,241777  радиан или 13,85278  градуса.

3. Площадь грани АСD,

Находим векторы АС и АD.

Вектор АC = (9; 2; -10) определён в п. 1. Модуль = √185 ≈ 13,60147.

Вектор АD = (11; 4; -1), √(121+16+1) = √138 ≈ 11,74734.

Площадь грани ACD равна половине модуля векторного произведения: S = (1/2)|AC*AD|.

 i        j       k|       i        j

9      2    -10|      9      2

11      4      -1|     11      4   =   -2i - 110j + 36k + 9j + 40i - 22k =

                                        =   38i - 101j + 14k = (38; -101; 14).

Модуль равен √(38² + (-101)² + 14²) = √11841  ≈ 108,8163591 .

Площадь S = (1/2)*√11841  = 54,40817953 .

4. Объем АВСD(объем пирамиды ).

Объём пирамиды V = (1/6)*|(ABxAC)*AD|.

Вектор АВ = (7; 4; -7) определён в п. 1. Модуль = √114 ≈ 10,67708.

Вектор АС = (9; 2; -10), √(81+4+100) = √185 ≈ 13,60147. (см. п. 2).

i        j       k|       i        j

7      4      -7|       7      4

9      2     -10|     9      2   =   -40i - 63j + 14k + 70j +1 4i - 36k =

                                        =   -26i + 7j - 22k = (-26; 7; -22).

Модуль равен √((-26)² + 7² + (-22)²) = √1209  ≈ 34,7706773 .

5. Уравнение стороны ВС. Вектор ВС = (2; -2; -3).

(x - 2)/2 = (y - 3)/(-2) = (z - 1)/(-3).

6. Уравнение грани АВD по точкам А(-5;-1;8), В(2;3;1), D(6;3;7).

Для составления уравнения плоскости используем формулу:

x - xA          y - yA         z - zA

xB - xA         yB - yA         zB - zA

xC - xA         yC - yA          zC - zA

 = 0

Подставим данные и упростим выражение:

x - (-5)       y - (-1)              z - 8

2 - (-5)       3 - (-1)      1 - 8

6 - (-5)       3 - (-1)       7 - 8

 = 0

x - (-5) y - (-1) z - 8

7 4 -7

11 4 -1

 = 0

x - (-5)  4·(-1)-(-7)·4  -  y - (-1)  7·(-1)-(-7)·11  +  z - 8  7·4-4·11  = 0

24 x - (-5)  + (-70) y - (-1)  + (-16) z - 8  = 0

24x - 70y - 16z + 178 = 0  или, сократив на 2

12x - 35y - 8z + 89 = 0 .

7.Уравнение высоты СН к грани АВD .

Нормальный вектор плоскости АВД принимаем из её уравнения:

АВД = (12; -35; -8).

Тогда уравнение высоты СН:

(x - 4)/12 = (y - 1)/(-35) = (z + 2)/(-8).

0,0(0 оценок)
Ответ:
Inna2404
Inna2404
06.01.2021 23:09

Существуют такие формы записи уравнения прямой в пространстве:

1) {A1x+B1y+C1z+D1=0(P1)A2x+B2y+C2z+D2=0(P2)− общее уравнение прямой L в пространстве, как линии пересечения двух плоскостей P1 и P2.

pryamayavprostr1

2) x−x0m=y−y0n=z−z0p−  каноническое уравнение прямой L, которая проходит через точку M(x0,y0,z0) параллельно вектору S⎯⎯⎯=(m,n,p). Вектор S⎯⎯⎯ является направляющим вектором прямой L.

pryamayavprostr2

3) x−x1x2−x1=y−y1y2−y1=z−z1z2−z1− уравнение прямой, которая проходит через две точки A(x1,y1,z1) и B(x2,y2,z2).

4) Приравнивая каждую из частей канонического уравнения 2 к прараметру t, получаем параметрическое уравнение прямой:

⎧⎩⎨⎪⎪x=x0+mty=y0+ntz=z0+pt

Расположение двух прямых в пространстве.

Пусть L1: x−x1m1=y−y1n1=z−z1p1 S⎯⎯⎯1=(m1,n1,p1);

           L2: x−x2m2=y−y2n2=z−z2p2, S⎯⎯⎯2=(m2,n2,p2).

Условие параллельности двух прямых: Прямые L1 и L2 параллельны тогда и только тогда, когда S⎯⎯⎯1∥S⎯⎯⎯2⇔ m1m2=n1n2=p1p2.

Условие перпендикулярности двух прямых: L1⊥L2⇔ S⎯⎯⎯1⊥S⎯⎯⎯2⇔  m1⋅m2+n1⋅n2+p1⋅p2=0.

Угол между прямыми:

cos(L1,L2)ˆ= S⎯⎯⎯1⋅S⎯⎯⎯2|S⎯⎯⎯1|⋅|S⎯⎯⎯2|=m1⋅m2+n1⋅n2+p1⋅p2m21+n21+p21√⋅m22+n22+p22√.

 ugol2

Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.

Пусть прямая L задана уравнением x−x0m=y−y0n=z−z0p, следовательно S⎯⎯⎯=(m,n,p).  Пусть также M2=(x2,y2,z2)− произвольная точка, принадлежащая прямой L. Тогда расстояние от точки M1=(x1,y1,z1) до прямой L можно найти по формуле:

d(M1,L)=|[M1M2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,S⎯⎯⎯]||S⎯⎯⎯|.

dist

Примеры.

2.198. Написать каноническое уравнение прямой, проходящей через точку M0(2,0,−3) параллельно:

а) вектору q(2,−3,5);

б) прямой x−15=y+22=z+1−1;

в) оси OX;

д) прямой {3x−y+2z−7=0,x+3y−2z−3=0;

е) прямой x=−2+t,y=2t,z=1−12t.

Решение.

а) Воспользуемся формулой (2) уравнения прямой в пространстве:

x−x0m=y−y0n=z−z0p−  каноническое уравнение прямой L, которая проходит через точку M(x0,y0,z0) параллельно вектору S⎯⎯⎯=(m,n,p).

По условию  M0(2,0,−3) и S⎯⎯⎯=q(2,−3,5).

Таким образом, x−22=y−0−3=z−(−3)5⇒x−22=y−3=z+35.

ответ: x−22=y−3=z+35.

б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой  x−15=y+22=z+1−1 имеет координаты S⎯⎯⎯(5,2,−1). Далее, находим уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(5,2,−1) как и в пункте а):

x−25=y−02=z−(−3)−1⇒x−25=y2=z+3−1.

ответ: x−25=y2=z+3−1.

в) ось OX имеет направляющий вектор i=(1,0,0). Таким образом, ищем уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору i(1,0,0):

x−21=y−00=z−(−3)0⇒x−21=y0=z+30.

ответ: x−21=y0=z+30.

д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей, поэтому Направляющий вектор прямой

{3x−y+2z−7=0,x+3y−2z−3=0; можно найти как векторное произведение нормалей заданных плоскостей.

Для плоскости P1: 3x−y+2z−7=0 нормальный вектор имеет координаты N1(3,−1,2);

для плосости P2: x+3y−2z−3, нормальный вектор имеет координаты N2(1,3,−2).

Находим векторное произведение:

[N1,N2]=∣∣∣∣∣i31j−13k2−2∣∣∣∣∣=i(2−6)−j(−6−2)+k(9+1)=−4i+8j+10k.

Таким образом, направляющий вектор прямой {3x−y+2z−7=0,x+3y−2z−3=0; имеет координаты S⎯⎯⎯(−4,8,10).

Далее нам необходимо найти уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(−4,8,10):

x−2−4=y−08=z−(−3)10⇒x−2−4=y8=z+310.

ответ: x−2−4=y8=z+310.

 {jumi[*4]}

е) Найдем направляющий вектор прямой  x=−2+t,y=2t,z=1−12t. Для этого запишем уравнение этой прямой в каноническом виде:

⎧⎩⎨⎪⎪x=−2+t,y=2t,z=1−12t⇒ ⎧⎩⎨⎪⎪⎪⎪t=x+2,t=y2,t=z−1−12 ⇒x+21=y2=z−1−12.

Отсюда находим направляющий вектор S⎯⎯⎯(1,2,−12). Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): S⎯⎯⎯1(2,4,−1).

Далее нам необходимо найти уравнение прямой проходящей точку M0(2,0,−3) параллельно вектору S⎯⎯⎯(2,4,−1):

x−22=y−04=z−(−3)−1⇒x−22=y4=z+3−1.

ответ: x−22=y4=z+3−1.

2.199(a). Написать уравнение прямой, проходящей через две заданные точки M1(1,−2,1) и M2(3,1,−1).

Решение.

Воспользуемся формулой (3) уравнения прямой в пространстве:

x−x1x2−x1=y−y1y2−y1=z−z1z2−z1− уравнение прямой, которая проходит через две точки A(x1,y1,z1) и B(x2,y2,z2).

Подставляем заданные точки:

x−13−1=y+21+2=z−1−1−1⇒ x−12=y+23=z−1−2.

ответ: x−12=y+23=z−1−2.

2.204. Найти расстояние между параллельными прямыми

x−23=y+14=z2 и x−73=y−14=z−32.

Решение.

Расстояние между параллельными прямыми L1 и L2  равно расстоянию от произвольной точки прямой L1 до прямой L2. Следовательно, его можно найти по формуле

d(L1,L2)=d(M1,L2)=|[M1M2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯,S⎯⎯⎯]||S⎯⎯⎯|,

где M1− произвольная точка прямой L1, M2−произвольная точка прямой L2, S⎯⎯⎯− направляющий вектор прямой L2.

Из канонических уравнений прямых берем точки M1=(2,−1,0)∈L1, M2=(7,1,3)∈L2, $\overline S=(3, 4, 2).$

Отсюда находим M1M2⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯=(7−2,1−(−1),3−0)=(5,2,3);

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота