y’ всегда положительна.
Пошаговое объяснение:
Найдём производную функции:
y’=15x^4+27x^8
Приравняем производную функции к нулю и найдём критические точки:
15x^4+27x^8=0;
3x^4(5+9x^4)=0;
x1=0
9x^4=-5
Т.к. значение в четвертой степени всегда положительно, а число"-5" отрицательно, то у х2 нет решения.
В итоге решение одно-"х=0". Исследуем эту точку на максимум/минимум.
У нас есть 2 интервала: (-∞;0)∪(0;+∞). Возьмём любую точку из обоих интервалов и подставим в производную, например, -1 и 1:
15*1^4+27*1^8=42;
15*(-1)^4+27*(-1)^8=42;
Как видно, оба значения получились положительными. Это значит, что в точке х=0 нет ни минимума, ни максимума и функция монотонно возрастает.
Здесь нельзя сокращать на множитель (х – 3).
2(х – 3) – (х – 3)(х + 5) = 0, вынесем общую скобку:
(х – 3)(-х – 3) = 0, теперь
х – 3 = 0 или -х – 3 = 0;
х = 3 или х = -3.
ответ: -3; 3.
Второй
(х + 3) / (х – 3) + (х – 3) / (х + 3) = 10/3 + 36/(х – 3)(х + 3).
Умножив обе части уравнения на общий знаменатель и заменив исходное уравнение целым, получим равносильную систему:
{3(х + 3)2 + 3(х – 3)2 = 10(х – 3)(х + 3) + 3 · 36;
{(х – 3)(х +3) ≠ 0.
В результате получим два корня: х = 3 или х = -3, но х ≠ 3 и х ≠ -3.
Третье
(х + 5)(х2 + 4х - 5)/(х + 5)(х + 2) = 0.
Часто ограничиваются таким решением:
(х2 + 4х – 5) / (х + 2) = 0.
{х = -5, х = 1,
{х ≠ -2.
ответ: -5; 1.
Правильный ответ 1
y’ всегда положительна.
Пошаговое объяснение:
Найдём производную функции:
y’=15x^4+27x^8
Приравняем производную функции к нулю и найдём критические точки:
15x^4+27x^8=0;
3x^4(5+9x^4)=0;
x1=0
9x^4=-5
Т.к. значение в четвертой степени всегда положительно, а число"-5" отрицательно, то у х2 нет решения.
В итоге решение одно-"х=0". Исследуем эту точку на максимум/минимум.
У нас есть 2 интервала: (-∞;0)∪(0;+∞). Возьмём любую точку из обоих интервалов и подставим в производную, например, -1 и 1:
15*1^4+27*1^8=42;
15*(-1)^4+27*(-1)^8=42;
Как видно, оба значения получились положительными. Это значит, что в точке х=0 нет ни минимума, ни максимума и функция монотонно возрастает.