Пошаговое объяснение:
Это задача на теорему Байеса. Гипотезы:
Н1 -- взята винтовка с оптическим прицелом. Вероятность гипотезы Р (Н1) = 4/10 = 0.4.
Н2 -- взята винтовка без оптического прицела. Вероятность гипотезы Р (Н2) = 6/10 = 0.6.
Событие А -- попадание в цель. Условные вероятности попадания для каждой из гипотез: Р (А | H1) = 0.95, Р (А | H2) = 0.8.
Полная вероятность попадания: Р (А) = Р (А | H1) * Р (Н1) + Р (А | H2) * Р (Н2) = 0.4*0.95 + 0.6*0.8 = 0.86.
Апостериорная вероятность первой гипотезы при условии, что пуля попала в мишень:
P(H1 | A) = P(A | H1) * P(H1) / P(A) = 0.4*0.95/0.86.
Апостериорная вероятность второй гипотезы при условии, что пуля попала в мишень:
P(H2 | A) = P(A | H2) * P(H2) / P(A) = 0.6*0.8/0.86.
Отсюда P(H2 | A) > P(H1 | A), то есть более вероятно, что стрелок стрелял из винтовки без оптического прицела.
507. Дано: ΔABC, CH і AT — висоти, AB = 8 см, ВС = 6 см, СН = 3 см. Знайти АТ.
Площа трикутника рівна половині добутку сторони на висоту, проведену на цю сторону.
Знайдемо площу трикутника ΔABC:
Виразимо іншу висоту через цю ж формулу:
Відповідь: АТ = 4 см.
508. Дано: ΔEFS — рівнобедрений, EF — основа, EF = 40 см, SF = 29 см. Знайти S(EFS).
SF = SE = 29 см, так як ΔEFS — рівнобедрений.
Проведемо висоту SH до основи тр-ка. Висота у рівнобедреному тр-ку є медіаною, тому EH = FH = 40/2 = 20 см.
Знайдемо катет SH з ΔESH (∠EHS = 90°) за т. Піфагора:
Підставимо значення у формулу площі трикутрина:
Відповідь: Площа ΔEFS рівна 420 см².
Пошаговое объяснение:
Это задача на теорему Байеса. Гипотезы:
Н1 -- взята винтовка с оптическим прицелом. Вероятность гипотезы Р (Н1) = 4/10 = 0.4.
Н2 -- взята винтовка без оптического прицела. Вероятность гипотезы Р (Н2) = 6/10 = 0.6.
Событие А -- попадание в цель. Условные вероятности попадания для каждой из гипотез: Р (А | H1) = 0.95, Р (А | H2) = 0.8.
Полная вероятность попадания: Р (А) = Р (А | H1) * Р (Н1) + Р (А | H2) * Р (Н2) = 0.4*0.95 + 0.6*0.8 = 0.86.
Апостериорная вероятность первой гипотезы при условии, что пуля попала в мишень:
P(H1 | A) = P(A | H1) * P(H1) / P(A) = 0.4*0.95/0.86.
Апостериорная вероятность второй гипотезы при условии, что пуля попала в мишень:
P(H2 | A) = P(A | H2) * P(H2) / P(A) = 0.6*0.8/0.86.
Отсюда P(H2 | A) > P(H1 | A), то есть более вероятно, что стрелок стрелял из винтовки без оптического прицела.
507. Дано: ΔABC, CH і AT — висоти, AB = 8 см, ВС = 6 см, СН = 3 см. Знайти АТ.
Площа трикутника рівна половині добутку сторони на висоту, проведену на цю сторону.
Знайдемо площу трикутника ΔABC:
Виразимо іншу висоту через цю ж формулу:
Відповідь: АТ = 4 см.
508. Дано: ΔEFS — рівнобедрений, EF — основа, EF = 40 см, SF = 29 см. Знайти S(EFS).
SF = SE = 29 см, так як ΔEFS — рівнобедрений.
Проведемо висоту SH до основи тр-ка. Висота у рівнобедреному тр-ку є медіаною, тому EH = FH = 40/2 = 20 см.
Знайдемо катет SH з ΔESH (∠EHS = 90°) за т. Піфагора:
Підставимо значення у формулу площі трикутрина:
Відповідь: Площа ΔEFS рівна 420 см².