Решим задачу алгебраическим с уравнения) 60 тетрадей=840 листов бумаги один вид тетради=по 12 листов второй вид тетради=по 18 листов Найти: тетрадей первого вида=? штук тетрадей второго вида=? штук Решение Пусть х - количество тетрадей первого вида, а у - второго вида. По условиям задачи х+у=60 (| уравнение)
На тетради первого вида использовали 12*х листов бумаги, а второго вида 18у листов бумаги. По условиям задачи 12х+18у=840 (|| равнение)
Решим систему неравенств (методом сложения): {х+у=60 (*-12) {12х+18у=840
{-12x-12y= -720 +{12х+18у=840 =(-12х+12х)+(-12у+18у)=-720+840 6у=120 у=120:6 у=20 (тетрадей второго вида)
у+х=60 20+х=60 х=60-20 х=40 (тетрадей первого вида) ответ: тетрадей первого вида 40 штук (по 12 листов), а второго вида 20 штук (по 18 листов)
Проверим: 12*40+18*20= 480+360=840 листов
или (если систему уравнений ещё не проходили) Пусть х - тетрадей по 12 листов. Тогда количество тетрадей по 18 листов равно: 60-х. 12*х листов необходимо для изготовления первого вида тетрадей (по 12 листов), а 18(60-х) листов необходимо для изготовления второго вида тетрадей (по 18 листов). Всего на 60 тетрадей ушло 840 листов: 12х+18(60-х)=840 12х+1080-18х=840 -6х=840-1080 -6х=-240 6х=240 х=240:6 х=40 (тетрадей первого вила) 60-х-60-40=20 (тетрадей второго вида)
Пошаговое объяснение:
Задача 1
Дано:
ν = 0,1 моль
λ = 9,01·10⁻¹³ с⁻¹ - постоянная распада
Nₐ = 6,02·10²³ моль⁻¹ - постоянная Авогадро
A - ?
Активность:
A₀ = λ·N₀
Число атомов из формулы:
ν = N₀/Nₐ → N₀ = ν·Nₐ
N₀ = 0,1·6,02·10²³ = 6,02·10²²
Имеем:
A₀ = λ·N₀ = 9,01·10⁻¹³·6,02·10²³ = 5,4·10¹¹ Бк
Задача 2
Дано:
m = 0,2 г = 0,2·10⁻³ кг
M = 235·10⁻³ кг/моль
λ = 3,14·10⁻¹⁷ c⁻¹
А₀ - ?
Количество вещества:
ν = m / M = 0,2·10⁻³ / 235·10⁻³ = 850·10⁻⁶ моль
N₀ = ν·Nₐ = 850·10⁻⁶·6,02·10²³ = 5,1·10²⁰
Активность:
A₀ = λ·N₀ = 3,14·10⁻¹⁷·5,1·10²⁰ = 16 000 Бк
Задача 3
Дано:
A₀ = 5 Ки = 5·3,7·10¹⁰ Бк = 1,85·10¹¹ Бк
λ = 1,37·10⁻¹¹ c⁻¹
M = 226·10⁻³ кг/моль - молярная масса радия
m - ?
A₀ = λ·N₀
Отсюда:
N₀ = A₀/λ = 1,85·10¹¹ / 1,37·10⁻¹¹ ≈ 1,35·10²²
Из формулы:
m/M = N₀/Nₐ
m = M·N₀/Nₐ = 226·10⁻³·1,35·10²² / 6,02·10²³ ≈ 0,005 кг или 5 г
Задача 4
Дано:
n = 8
t = 11,4 сут
Т - ?
Из формулы:
n = t / T
Отсюда:
T = t / n = 11,4 / 8 ≈ 1,4 сут
60 тетрадей=840 листов бумаги
один вид тетради=по 12 листов
второй вид тетради=по 18 листов
Найти:
тетрадей первого вида=? штук
тетрадей второго вида=? штук
Решение
Пусть х - количество тетрадей первого вида, а у - второго вида.
По условиям задачи х+у=60 (| уравнение)
На тетради первого вида использовали 12*х листов бумаги, а второго вида 18у листов бумаги.
По условиям задачи 12х+18у=840 (|| равнение)
Решим систему неравенств (методом сложения):
{х+у=60 (*-12)
{12х+18у=840
{-12x-12y= -720
+{12х+18у=840
=(-12х+12х)+(-12у+18у)=-720+840
6у=120
у=120:6
у=20 (тетрадей второго вида)
у+х=60
20+х=60
х=60-20
х=40 (тетрадей первого вида)
ответ: тетрадей первого вида 40 штук (по 12 листов), а второго вида 20 штук (по 18 листов)
Проверим:
12*40+18*20= 480+360=840 листов
или (если систему уравнений ещё не проходили)
Пусть х - тетрадей по 12 листов. Тогда количество тетрадей по 18 листов равно: 60-х.
12*х листов необходимо для изготовления первого вида тетрадей (по 12 листов), а 18(60-х) листов необходимо для изготовления второго вида тетрадей (по 18 листов). Всего на 60 тетрадей ушло 840 листов:
12х+18(60-х)=840
12х+1080-18х=840
-6х=840-1080
-6х=-240
6х=240
х=240:6
х=40 (тетрадей первого вила)
60-х-60-40=20 (тетрадей второго вида)