№1. 1) Пусть собственная скорость лодки - v км/ч. Тогда скорость лодки по течению реки (v+3) км/ч , а пройденное расстояние 2(v+3) км. Скорость лодки против течения реки (v-3) км/ч, пройденное расстояние 3(v-3) км. Зная , что данные расстояния равны , составим уравнение: 2(v+3) = 3(v-3) 2v+6=3v-9 2v -3v =-9-6 -v=-15 v=15 (км/ч) собственная скорость лодки 2(15+3) = 3(15-3) =36 (км) расстояние
2) Пусть расстояние между пунктами - х км. Тогда скорость лодки по течению реки х/2 км/ч, а скорость против течения реки х/3 км/ч. Зная, что скорость течения реки 3 км/ч , составим уравнение: х/2 - 3 = х/3 + 3 |*6 3x - 18 = 2x +18 3x - 2x= 18+18 x=36 (км) расстояние
Сначала найдём касательную к графику используя уравнение касательной: y=f(x₀)+f'(x₀)(x-x₀) для этого найдём производную функции f(x)=-x²+3 f'(x)=(-x²+3)'=-2x и значение производной в точке x₀=1 f'(1)=-2*1=-2. Значение функции в точке x₀=1 f(1)=-1+3=2 Теперь можно составить уравнение касательной y=2-2(x-1)=2-2x+2=-2x+4 Начертим рисунок. По рисунку видим, что фигура ограничена сверху прямой y=-2x+4, снизу параболой y=-x²+3, слева прямой х=0 и лежит на интервале [0;1]. Так как функция y=-2x+4 больше функции y=-x²+3 на интервале [0;1], то формула вычисления площади фигуры будет выглядеть следующим образом:
1)
Пусть собственная скорость лодки - v км/ч.
Тогда скорость лодки по течению реки (v+3) км/ч , а пройденное расстояние 2(v+3) км.
Скорость лодки против течения реки (v-3) км/ч, пройденное
расстояние 3(v-3) км.
Зная , что данные расстояния равны , составим уравнение:
2(v+3) = 3(v-3)
2v+6=3v-9
2v -3v =-9-6
-v=-15
v=15 (км/ч) собственная скорость лодки
2(15+3) = 3(15-3) =36 (км) расстояние
2)
Пусть расстояние между пунктами - х км.
Тогда скорость лодки по течению реки х/2 км/ч, а скорость против течения реки х/3 км/ч.
Зная, что скорость течения реки 3 км/ч , составим уравнение:
х/2 - 3 = х/3 + 3 |*6
3x - 18 = 2x +18
3x - 2x= 18+18
x=36 (км) расстояние
ответ: 36 км расстояние от деревни до города.
№2.
y=f(x₀)+f'(x₀)(x-x₀)
для этого найдём производную функции f(x)=-x²+3
f'(x)=(-x²+3)'=-2x
и значение производной в точке x₀=1
f'(1)=-2*1=-2.
Значение функции в точке x₀=1
f(1)=-1+3=2
Теперь можно составить уравнение касательной
y=2-2(x-1)=2-2x+2=-2x+4
Начертим рисунок. По рисунку видим, что фигура ограничена сверху прямой y=-2x+4, снизу параболой y=-x²+3, слева прямой х=0 и лежит на интервале [0;1]. Так как функция y=-2x+4 больше функции y=-x²+3 на интервале [0;1], то формула вычисления площади фигуры будет выглядеть следующим образом:
ед²