Какая сумма при выплате через 3 года эквивалентна 10 тыс. рублей, выплачиваемых через 10 лет от настоящего момента, если норма процента равна 5% в год? ответ в интернете не верен, кто сможет решить
У одноклассников Пети может быть 0, 1, 2, ..., 28 друзей – всего 29 вариантов. Но если кто-то дружит со всеми, то у всех не меньше одного друга. Поэтому либо есть такой, кто дружит со всеми, либо есть такой, кто не дружит ни с кем. В обоих случаях остается 28 вариантов: 1, 2, ..., 28 или 0, 1, ..., 27. Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B. Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников. Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д. Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14 ответ:14
Заменим x=tg(a/2) ,тогда по формуле тригонометрической подстановки: sqrt(2x/(1+x^2))=sqrt(sinx). Тк -1<=sinx<=1 sqrt(sinx)<=1,откуда: sqrt(2x/1+x^2)<=1 sqrt(2x/1+x^2)+1<=2 Преобразуем левую часть уравнения: Заменим :tg(x+y)=t t^2+1/t^2=(t-1/t)^2+2>=2 (тк квадрат всегда больше 0) Таким образом: (t-1/t)^2+2>=2 sqrt(2x/1+x^2)+1<=2 а тогда равенство может выполняется только тогда когда: (t-1/t)^2+2=2 Sqrt(2x/1+x^2)+1=2
t-1/t=0 t=+-1. tg(x+y)=+-1 x+y=+-pi/4 +pi*n n-целое число sqrt(2x/1+x^2)=1 2x=1+x^2 x^2-2x+1=0 (x-1)^2=0 x=1 Откуда: y=+-pi/4-1+pi*n n-целое ответ:x=1; y=+-pi/4-1+pi*n n-целое число
Обозначим того, у кого больше всего друзей через A, а того, у кого их меньше всего – через B. В первом случае A дружит со всеми, а B – только с одним человеком, то есть только с A. Во втором случае B не дружит ни с кем, а A дружит со всеми, кроме одного, то есть со всеми, кроме B.
Итак, в каждом из случаев A дружит с Петей, а B – нет. Переведём A и B в другой класс. Как мы уже видели, A дружит со всеми из оставшихся, а B – ни с кем из оставшихся. Поэтому после перевода у каждого стало на одного друга меньше (среди одноклассников). Значит, у оставшихся Петиных одноклассников снова будет разное число друзей среди одноклассников.
Теперь снова переведём самого "дружелюбного" и самого "нелюдимого" в другой класс и т. д.
Повторяя эти рассуждения 14 раз, мы переведём в другой класс 14 пар школьников, в каждой из которых ровно один Петин друг. Итак, друзей у Пети 14
ответ:14
sqrt(2x/(1+x^2))=sqrt(sinx). Тк -1<=sinx<=1
sqrt(sinx)<=1,откуда:
sqrt(2x/1+x^2)<=1
sqrt(2x/1+x^2)+1<=2
Преобразуем левую часть уравнения:
Заменим :tg(x+y)=t
t^2+1/t^2=(t-1/t)^2+2>=2 (тк квадрат всегда больше 0)
Таким образом:
(t-1/t)^2+2>=2
sqrt(2x/1+x^2)+1<=2
а тогда равенство может выполняется только тогда когда:
(t-1/t)^2+2=2
Sqrt(2x/1+x^2)+1=2
t-1/t=0 t=+-1. tg(x+y)=+-1 x+y=+-pi/4 +pi*n n-целое число
sqrt(2x/1+x^2)=1
2x=1+x^2
x^2-2x+1=0
(x-1)^2=0
x=1
Откуда:
y=+-pi/4-1+pi*n n-целое
ответ:x=1; y=+-pi/4-1+pi*n n-целое число