Задание 11. Вариант 14.
Дана сила F₁(-2; 2; 1), приложенная в точке M(1; 0; -8), и точка N(11; 4; 0), относительно которой определить момент силы, его величину и углы к осям.
Задача имеет решения.
1) Векторы F₁ и MN расположить в одной плоскости. Момент определяется по формуле M = |F₁|*|MN|*sinα, где α - угол между векторами.
Вектор MN = (11-1; 4-0; 0-(-8)) = (10; 4; 8).
Модуль MN= √(100 + 16 + 64) = √180 = 6√5.
Модуль F₁(-2; 2; 1) = √(4 + 4 + 1) = √9 = 3.
cos α = (10*(-2) + 4*2 + 8*1) /((6√5)*3) = -4/(18√5) = -2/(9√5).
Находим синус угла: sin α = √(1 - cos²α) = √(1 - (4/405)) = √401/(9√5).
Находим момент: M = 3*6√5*(√401/9√5) = 2√401 ≈ 40,05 ед.
2) Момент относительно точки равен векторному произведению радиус-вектора точки приложения силы на вектор силы.
Находим векторное произведение силы F₁(-2; 2; 1) на вектор
MN (10; 4; 8),
i j k| i j
-2 2 1| -2 2
10 4 8| 10 4 = 16i + 10j - 8k + 16j - 4i - 20k =
= 12i + 26j - 28k = (12; 26; -28).
Находим модуль векторного произведения.
|M| = √(12² + 26² + (-28)²) = √(144 + 676 +784) = √1604 ≈ 40,04996879.
Осталось найти углы к осям.
cos(F₁_Ox) = 12/√1604, ∠ = 72,56487671 градуса,
cosF₁_Oy) = 26/√1604, ∠ = 49,51951465 градуса,
cosF₁_(Oz) = (-28)/√1604, ∠ = 134,3569759 градуса.
Дано уравнение: (x - a)(x²- 8x +12)=0.
Найди те значения a, при которых уравнение имеет три разных корня, и они образуют арифметическую прогрессию.
Найди те значения a, при которых корни уравнения образуют арифметическую прогрессию.
Решение : (x - a)(x²- 8x +12) = 0. ⇒
[ x - a = 0; x²- 8x +12 =0. (совокупность)
x₁ = a ; x₂=2 ; x₃= 6 .
три числа a ,2 ,6 образуют арифметическую прогрессию.
Возможны 6 случаев (перемещение: 3 ! = 6)
- - - - - - -
1 . 2 в середине
a ; 2 ; 6 или ( 6 ; 2 ; a ) || a ⇄ 6
2*2 = a+6 (свойство арифметической прогрессии) ⇒ a = - 2
2. 6 в середине
a ; 6 ; 2 или ( 2 ; 6 ; a ) || a ⇄ 2
2*6 = a + 2 ⇒ a =10
3. a в середине
2 ; a ; 6 или 6 ; a ; 2 || a ⇄ 2
2a =2 +6 ⇒ a = 4
ответ: -2 ; 4 ; 10 .
Задание 11. Вариант 14.
Дана сила F₁(-2; 2; 1), приложенная в точке M(1; 0; -8), и точка N(11; 4; 0), относительно которой определить момент силы, его величину и углы к осям.
Задача имеет решения.
1) Векторы F₁ и MN расположить в одной плоскости. Момент определяется по формуле M = |F₁|*|MN|*sinα, где α - угол между векторами.
Вектор MN = (11-1; 4-0; 0-(-8)) = (10; 4; 8).
Модуль MN= √(100 + 16 + 64) = √180 = 6√5.
Модуль F₁(-2; 2; 1) = √(4 + 4 + 1) = √9 = 3.
cos α = (10*(-2) + 4*2 + 8*1) /((6√5)*3) = -4/(18√5) = -2/(9√5).
Находим синус угла: sin α = √(1 - cos²α) = √(1 - (4/405)) = √401/(9√5).
Находим момент: M = 3*6√5*(√401/9√5) = 2√401 ≈ 40,05 ед.
2) Момент относительно точки равен векторному произведению радиус-вектора точки приложения силы на вектор силы.
Находим векторное произведение силы F₁(-2; 2; 1) на вектор
MN (10; 4; 8),
i j k| i j
-2 2 1| -2 2
10 4 8| 10 4 = 16i + 10j - 8k + 16j - 4i - 20k =
= 12i + 26j - 28k = (12; 26; -28).
Находим модуль векторного произведения.
|M| = √(12² + 26² + (-28)²) = √(144 + 676 +784) = √1604 ≈ 40,04996879.
Осталось найти углы к осям.
cos(F₁_Ox) = 12/√1604, ∠ = 72,56487671 градуса,
cosF₁_Oy) = 26/√1604, ∠ = 49,51951465 градуса,
cosF₁_(Oz) = (-28)/√1604, ∠ = 134,3569759 градуса.
Дано уравнение: (x - a)(x²- 8x +12)=0.
Найди те значения a, при которых уравнение имеет три разных корня, и они образуют арифметическую прогрессию.
Найди те значения a, при которых корни уравнения образуют арифметическую прогрессию.
Решение : (x - a)(x²- 8x +12) = 0. ⇒
[ x - a = 0; x²- 8x +12 =0. (совокупность)
x₁ = a ; x₂=2 ; x₃= 6 .
три числа a ,2 ,6 образуют арифметическую прогрессию.
Возможны 6 случаев (перемещение: 3 ! = 6)
- - - - - - -
1 . 2 в середине
a ; 2 ; 6 или ( 6 ; 2 ; a ) || a ⇄ 6
2*2 = a+6 (свойство арифметической прогрессии) ⇒ a = - 2
- - - - - - -
2. 6 в середине
a ; 6 ; 2 или ( 2 ; 6 ; a ) || a ⇄ 2
2*6 = a + 2 ⇒ a =10
- - - - - - -
3. a в середине
2 ; a ; 6 или 6 ; a ; 2 || a ⇄ 2
2a =2 +6 ⇒ a = 4
ответ: -2 ; 4 ; 10 .