Наименьшее значение подкоренное выражение достигает при а=0, оно равно 9, а корень из 9 равен трем, в то время как в числителе получаем 10, но 10/3 больше 3, а, значит, и подавно больше двух.
Если же а не равное нулю, то (а²+10)/√(а²+9)=((а²+9)+1)/√(а²+9)=
√(а²+9)+1/√(а²+9), только что доказали, что при а=0, получаем самое маленькое значение дроби, а если взять любое другое число, положительное, или отрицательное, то квадрат этого числа увеличит подкоренное выражение, и корень будет больше трех, а значит, и двух, да еще добавка в виде положительной дроби
1/√(а²+9) только добавит положительное число. Поэтому исходное выражение в задачи не будет меньше двух.
Наименьшее значение подкоренное выражение достигает при а=0, оно равно 9, а корень из 9 равен трем, в то время как в числителе получаем 10, но 10/3 больше 3, а, значит, и подавно больше двух.
Если же а не равное нулю, то (а²+10)/√(а²+9)=((а²+9)+1)/√(а²+9)=
√(а²+9)+1/√(а²+9), только что доказали, что при а=0, получаем самое маленькое значение дроби, а если взять любое другое число, положительное, или отрицательное, то квадрат этого числа увеличит подкоренное выражение, и корень будет больше трех, а значит, и двух, да еще добавка в виде положительной дроби
1/√(а²+9) только добавит положительное число. Поэтому исходное выражение в задачи не будет меньше двух.