Какие выражения решал ученик, если он записал решения по действиям? а) не известно? 1)157-130=27. 2) 27: 3=9. 5*7=35.2) 3*8=24.3) 35-24=11. 1)9*5=45. 2)12: 2=6.3)45+6=51. как правильно расписать?
Так если один из углов при основании = 60 градусов, то второй угол при основании тоже равен 60 градусов (св-ва р.б. трапеции), вторая бокова сторона равно 8 см (опять же св-во р.б. трапеции)
проводим высоту вн из угла в (допустим трапеция авсд) , получаем прямоугольный треугольник, т.к. мы знаем два угла а=60градусов, и вна равен 90 градусов, то угол авн=30 градусов, значит ан равен 5 см, тк (в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы),если мы проведем из угла с высоту ск, то получим равный авн треугольник, следовательно кд равен 5 см, значит основание равно 8 + 10= 18
ответ: 26; 15; 64;250;24
Пошаговое объяснение:
Делаем задания через определенные интегралы и первообразные:
1.
Подставляем в первообразную границы интегрирования:
2.
Подставляем в первообразную границы интегрирования:
3.
Подставляем в первообразную границы интегрирования:
4.
Производим ровно те же операции, что и до этого, так как требуется найти путь у параболы ветвями вверх => интеграл не будет отрицательным.
Подставляем в первообразную границы интегрирования:
5.
Находим первообразную заданной функции:
Ограничивающие прямые - те же границы интегрирования:
Так если один из углов при основании = 60 градусов, то второй угол при основании тоже равен 60 градусов (св-ва р.б. трапеции), вторая бокова сторона равно 8 см (опять же св-во р.б. трапеции)
проводим высоту вн из угла в (допустим трапеция авсд) , получаем прямоугольный треугольник, т.к. мы знаем два угла а=60градусов, и вна равен 90 градусов, то угол авн=30 градусов, значит ан равен 5 см, тк (в прямоугольном треугольнике против угла в 30 градусов лежит катет равный половине гипотенузы),если мы проведем из угла с высоту ск, то получим равный авн треугольник, следовательно кд равен 5 см, значит основание равно 8 + 10= 18
теперь периметр 8 + 18 + 10х2 = 46 см