При решении показательных неравенств пользуются свойством монотонности показательной функции.
Функция y=a^xy=a
x
возрастает на всей области определения при a > 1a>1 и убывает на всей области определения при 0 < a < 10<a<1 .
Таким образом, при решении показательных неравенств применяются следующие переходы:
a^{f(x)} > a^{g(x)}\Rightarrow f(x) > g(x),\ a > 1a
f(x)
>a
g(x)
⇒f(x)>g(x), a>1
a^{f(x)} > a^{g(x)}\Rightarrow f(x) < g(x),\ 0 < a < 1a
⇒f(x)<g(x), 0<a<1
если
то характер функции возрастающий .
а если
то характер функции убывающий.
При решении показательных неравенств пользуются свойством монотонности показательной функции.
Функция y=a^xy=a
x
возрастает на всей области определения при a > 1a>1 и убывает на всей области определения при 0 < a < 10<a<1 .
Таким образом, при решении показательных неравенств применяются следующие переходы:
a^{f(x)} > a^{g(x)}\Rightarrow f(x) > g(x),\ a > 1a
f(x)
>a
g(x)
⇒f(x)>g(x), a>1
a^{f(x)} > a^{g(x)}\Rightarrow f(x) < g(x),\ 0 < a < 1a
f(x)
>a
g(x)
⇒f(x)<g(x), 0<a<1
если
то характер функции возрастающий .
а если
то характер функции убывающий.