В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История

Какое докозательство малой теоремы ферма?

Показать ответ
Ответ:
zdiana1
zdiana1
08.10.2020 02:02

Рассмотрим два случая: a делится на p; a не делится на p.

1) a делится на p;

Тогда используя сравнения запишем:

a ≡ 0 (mod p);

ap ≡ 0 (mod p);

Или ap ≡ a (mod p).

В этом случае теорема доказана.

2) a не делится на p;

Рассмотрим числа a, 2a, 3a,...,(p - 1)a (*).

Покажем, что эти числа дают разные остатки при делении на p. Очевидно, остаток также не может быть 0.

Докажем от обратного.

Пусть какие-то два числа ka, na имеют одинаковые остатки при делении на p (пусть k> n). Тогда разность ka - na делится на p. Значит (k - n)a делится на p. Но a не делится на p, а разница k - n меньше p и отлична от нуля, потому также не делится на p. Мы пришли к противоречию - наше предположение, что числа (*) могут давать одинаковые остатки при делении на p ошибочно. Запишем это:

a ≡ r1 (mod p);

2a ≡ r2 (mod p);

...

(p - 1)a ≡ rp - 1 (mod p);

Используя свойства сравнения перемножаем предыдущие сравнения. Так как всего множителей p - 1, а все остатки при делении на p разные, то справа будет (p - 1)!

ap - 1(p - 1)! ≡ (p - 1)! (mod p);

(ap - 1 - 1)(p - 1)! ≡ 0 (mod p);

Но (p - 1)! не делится на p, так как p - простое, а все множители факториала меньше p. Значит (ap - 1 - 1) делится на p.

(ap - 1 - 1) ≡ 0 (mod p);

ap - 1 ≡ 1 (mod p);

ap ≡ a (mod p);

Что и требовалось доказать.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота