Если мы берем хоть одно число с остатком 1 при делении на 3, то мы должны взять только такие числа, потому что:
1) если берем еще число кратное 3, то должны взять число с остатком 2 тогда, если в двойки чисел: (с остатком 1, кратно 3) и (с остатком 2, кратно 3) надо взять числа с разными остатками, поэтому мы не сможем выполнить условие, чтобы сумма в любых тройках была кратна 3
2) аналогично, если берем число с остатком 2, то получаем такую же ситуацию
чисел с остатком 1: 673
если мы берем хоть одно число с остатком 2 при делении на 3, то мы должны взять только такие числа, аналогично предыдущему случаю
чисел с остатком 2: 672
если берем все числа кратные трем, то получаем 672 числа
Наибольшее количество: 673, если взять все числа, которые дают остаток 1 при делении на 3
Допустим, это могут быть только числа, делящиеся на 3. Таких чисел в заданном диапазоне 672 = (2016 / 3). Очевидно, любая сумма этих чисел делится на 3.
Однако, мы можем взять еще больший диапазон, если возьмем набор чисел, выражающихся формулой 3х+1. Сумма трех таких чисел равна 3х+1+3y+1+3z+1 = 3 (x+y+z+1) и делится на 3. Таким чисел всего будет 673, так как 1 и 2017 подходят под эту формулу
1) если берем еще число кратное 3, то должны взять число с остатком 2
тогда, если в двойки чисел: (с остатком 1, кратно 3) и (с остатком 2, кратно 3) надо взять числа с разными остатками, поэтому мы не сможем выполнить условие, чтобы сумма в любых тройках была кратна 3
2) аналогично, если берем число с остатком 2, то получаем такую же ситуацию
чисел с остатком 1: 673
если мы берем хоть одно число с остатком 2 при делении на 3, то мы должны взять только такие числа, аналогично предыдущему случаю
чисел с остатком 2: 672
если берем все числа кратные трем, то получаем 672 числа
Наибольшее количество: 673, если взять все числа, которые дают остаток 1 при делении на 3
ответ: 673
Однако, мы можем взять еще больший диапазон, если возьмем набор чисел, выражающихся формулой 3х+1. Сумма трех таких чисел равна
3х+1+3y+1+3z+1 = 3 (x+y+z+1) и делится на 3. Таким чисел всего будет 673, так как 1 и 2017 подходят под эту формулу
Правильный ответ: 673