Пусть х - количество грибов, собранных Васей. Тогда: 2х - собрал Петя. 3х - собрал Дима. Уравнение: х + 2х + 3х = 30 6х = 30 х = 30:6 х = 5 грибов собрал Вася. 2х = 2•5 = 10 грибов собрал Петя. 3х = 3•5 = 15 грибов собрал Дима. ответ: 5, 10 и 15 грибов.
Проверка: 5+10+15=30 грибов было собрано грибов.
Или задача на части. Пусть 1 часть собрал Вася. 1) 1•2 = 2 части собрал Петя. 2) 1•3 = 3 части собрал Дима. 3) 1+2+3 = 6 частей собрали мальчики вместе. 4) 30:6=5 грибов в одной части - собрал Вася. 5) 5•2= 10 грибов в двух частях - собрал Петя. 6) 5•3=15 грибов в трех частях - собрал Диса.
Тогда:
2х - собрал Петя.
3х - собрал Дима.
Уравнение:
х + 2х + 3х = 30
6х = 30
х = 30:6
х = 5 грибов собрал Вася.
2х = 2•5 = 10 грибов собрал Петя.
3х = 3•5 = 15 грибов собрал Дима.
ответ: 5, 10 и 15 грибов.
Проверка:
5+10+15=30 грибов было собрано грибов.
Или задача на части.
Пусть 1 часть собрал Вася.
1) 1•2 = 2 части собрал Петя.
2) 1•3 = 3 части собрал Дима.
3) 1+2+3 = 6 частей собрали мальчики вместе.
4) 30:6=5 грибов в одной части - собрал Вася.
5) 5•2= 10 грибов в двух частях - собрал Петя.
6) 5•3=15 грибов в трех частях - собрал Диса.
Пошаговое объяснение:
Пусть z км проплыли туристы по течению реки, тогда против течения они проплыли (19−z) км.
7−1=6 км/ч — скорость лодки против течения реки,
7+1=8 км/ч — скорость лодки по течения реки.
Чтобы найти время, надо расстояние делить на скорость, поэтому:
19−z6 ч — время, затраченное туристами на путь против течения реки, а
z8ч — время, затраченное туристами на путь по течения реки.
Зная, что в пути туристы были менее трёх часов, составим неравенство:
19−z6+z8<3
Чтобы избавиться от дроби, умножим обе части неравенства на 48.
(19−z6+z8)⋅48<3⋅4819−z6⋅48+z8⋅48<1448⋅(19−z)+6⋅z<144152−8z+6z<144−2z<−8:(−2)z>4
ответ: 4<z<19 км.