В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
MAXIMUS111111111
MAXIMUS111111111
04.01.2021 03:46 •  Математика

Какой из квадратов a& d нельзя сложить из двух частей изображенных на рисунке справа? ? ​

Показать ответ
Ответ:
aimsen
aimsen
06.05.2020 06:48

  "Найдите параллельные прямые и докажите,что они равны" - задание некорректно. Можно говорить о параллельных прямых и равных отрезках на них. Или о равных параллельных отрезках.

    Решение задач опирается на равенство и сумму углов треугольников , теоремы о признаках параллельности двух прямых: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.(№33) . Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны (№30).

№ 30

   Рассмотрим Δ ABE и  Δ CDF.  BE = DF -- по условию;  АС = ЕF --- по условию.  AE = АС + СЕ;   CF = ЕF+ СЕ. ⇒ АЕ = СF, так как состоят из равных частей. Внешние углы  ∠BEF = ∠DFM по рисунку ⇒ равны и смежные внутренние углы этих треугольников.  ⇒ Δ ABE = Δ CDF ( по 2 сторонам и углу между ними)

  ∠BEF = ∠DFM по условию, а это соответственные углы при прямых BE, DF  и секущей АМ .   ⇒  BE ║DF по признаку параллельности прямых, и отрезки BE и DF равны как соответствующие стороны равных треугольников

     Прямые АВ и СD параллельны по признаку параллельности прямых , так как углы, образованные этими прямыми и секущей АМ равны как углы равных треугольников и эти углы ( ∠BАЕ и ∠DСF) являются соответственными. Отрезки АВ и СD равны как стороны равных треугольников

ответ: BE ║DF, BE =DF; АВ║СD, АВ =СD

№ 33

    Рассмотрим Δ NRQ; RQ= NQ - по условию.⇒ Δ NRQ - равнобедренный с основанием NR. А углы при основании равнобедренного тр-ка равны. Так как сумма углов треугольника равна 180°, то ∠RNQ = (180°-30°)/2 = 75°

   Рассмотрим Δ MNQ. ∠MQN = 30° + 45° = 75° -- по рисунку

∠NMQ = 180° - ∠RNQ - ∠MQN  = 180° - 75° - 75° = 30°

∠KNM = ∠NMQ = 30°, а эти углы - внутренние накрест лежащие при прямых KN, MQ и  секущей NM. ⇒ KN ║ MQ по признаку параллельности прямых

    MN = МQ так как треугольник MNQ равнобедренный, это вытекает из равенства углов ∠RNQ  и ∠MQN  

   В данной задаче можно найти только отрезок MQ, параллельный прямой KN,  равных параллельных отрезков нет. Есть равные стороны в равнобедренных треугольниках (MN =MQ и RQ = NQ) , но они не параллельны.

ответ:  KN ║ MQ.

0,0(0 оценок)
Ответ:
maks6434
maks6434
06.05.2020 06:48

  "Найдите параллельные прямые и докажите,что они равны" - задание некорректно. Можно говорить о параллельных прямых и равных отрезках на них. Или о равных параллельных отрезках.

    Решение задач опирается на равенство и сумму углов треугольников , теоремы о признаках параллельности двух прямых: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.(№33) . Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны (№30).

№ 30

   Рассмотрим Δ ABE и  Δ CDF.  BE = DF -- по условию;  АС = ЕF --- по условию.  AE = АС + СЕ;   CF = ЕF+ СЕ. ⇒ АЕ = СF, так как состоят из равных частей. Внешние углы  ∠BEF = ∠DFM по рисунку ⇒ равны и смежные внутренние углы этих треугольников.  ⇒ Δ ABE = Δ CDF ( по 2 сторонам и углу между ними)

  ∠BEF = ∠DFM по условию, а это соответственные углы при прямых BE, DF  и секущей АМ .   ⇒  BE ║DF по признаку параллельности прямых, и отрезки BE и DF равны как соответствующие стороны равных треугольников

     Прямые АВ и СD параллельны по признаку параллельности прямых , так как углы, образованные этими прямыми и секущей АМ равны как углы равных треугольников и эти углы ( ∠BАЕ и ∠DСF) являются соответственными. Отрезки АВ и СD равны как стороны равных треугольников

ответ: BE ║DF, BE =DF; АВ║СD, АВ =СD

№ 33

    Рассмотрим Δ NRQ; RQ= NQ - по условию.⇒ Δ NRQ - равнобедренный с основанием NR. А углы при основании равнобедренного тр-ка равны. Так как сумма углов треугольника равна 180°, то ∠RNQ = (180°-30°)/2 = 75°

   Рассмотрим Δ MNQ. ∠MQN = 30° + 45° = 75° -- по рисунку

∠NMQ = 180° - ∠RNQ - ∠MQN  = 180° - 75° - 75° = 30°

∠KNM = ∠NMQ = 30°, а эти углы - внутренние накрест лежащие при прямых KN, MQ и  секущей NM. ⇒ KN ║ MQ по признаку параллельности прямых

    MN = МQ так как треугольник MNQ равнобедренный, это вытекает из равенства углов ∠RNQ  и ∠MQN  

   В данной задаче можно найти только отрезок MQ, параллельный прямой KN,  равных параллельных отрезков нет. Есть равные стороны в равнобедренных треугольниках (MN =MQ и RQ = NQ) , но они не параллельны.

ответ:  KN ║ MQ.

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота