В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
kami179
kami179
08.06.2020 05:20 •  Математика

Какой % крошки в сахаре, если в мешке с прессованным колотым сахаром массой нетто 70кг оказалось 2,3кг кусочков массой менее 5г? Соответствует ли это допустимым нормам по стандарту? ответ:

Показать ответ
Ответ:
Бота157
Бота157
21.05.2023 16:09

ответ:

пошаговое объяснение:

полное решение составляется из 2:

1) общее решение однородного уравнения т.е. уравнения y"+9y=0

2) и частного решеня неоднородного (т.е. того что вы написали)

  для нахождения  общее решение
однородного уравнения запишем характеристическое уравнение 

k^2+9=0 =>   k=3   и k=-3 

тогда  общее решение однородного уравнения запишется так   a*e(3x)+b*e(-3x)

 

частного решеня неоднородного будем
искать   в виде(в виде правой части нашего уравнения)

 

y= c*e(3x)  

найдем y"  

y'=  c*3*e(3x)       y"=  c*9*e(3x)  

подставим в уравнение получим

 

c*9*e(3x) + 9*c*e(3x) = 6*e(3x)   ==>   c*9 + 9*c = 6   ==> 18*c=6   ==>   c=6/18=1/3

 

полное решение будет

 

y =  a*e(3x)+b*e(-3x) +1/3*e(3x)
=(a+1/3)*e(3x)+b*e(-3x)

 

подробнее - на -

0,0(0 оценок)
Ответ:
Даринка30000
Даринка30000
21.05.2023 16:09

Для начала нужно решить соответствующее линейное однородное дифференциальное уравнение, выполнив замену y=e^{kx}.

k_1=-\frac{1}{2}\\ k_2=1

Общее решение однородного диф. уравнения: \overline{y}=C_1e^{-\frac{x}{2}}+C_2e^x.

Рассмотрим функцию f(x)=4e^{-\frac{x}{2}}. Здесь P_n(x)=4, где n=0, \alpha =-\frac{1}{2}. Сравнивая \alpha с корнями характеристического уравнения и принимая во внимая, что

y^*=Axe^{-\frac{x}{2}}

Определим первые две производные функции частного решения и подставляем в исходное дифференциальное уравнение одновременно разделив обе части на e^{-\frac{x}{2}}.

y'=(Axe^{-\frac{x}{2}})'=Ae^{-\frac{x}{2}}-\frac{Ax}{2}e^{-\frac{x}{2}}

y''=(Ae^{-\frac{x}{2}}-\frac{Ax}{2}e^{-\frac{x}{2}})=-\frac{A}{2}e^{-\frac{x}{2}}-\frac{A}{2}e^{-\frac{x}{2}}+\frac{Ax}{4}e^{-\frac{x}{2}}=-Ae^{-\frac{x}{2}}+\frac{Ax}{2}e^{-\frac{x}{2}}

2(-A+\frac{Ax}{2})-(A-\frac{Ax}{2})=4\\ \\ -2A+Ax-A+\frac{Ax}{2}=4\\ \\ -6A+3Ax=8

Приравниваем коэффициенты при степенях x

-6A=8~~\Rightarrow~~ A=-\frac{4}{3}

Общее решение линейного неоднородного дифференциального уравнения ищем как сумму общего однородного диф. уравнения и частного решения

y=\overline{y}+y^*=C_1e^{-\frac{x}{2}}+C_2e^x-\frac{4}{3}xe^{-\frac{x}{2}}

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота