Пусть в первый день велосипедист был в пути х часов, тогда во второй день – (5 – х) часов. За первый день он преодолел расстояние: (20 • х) км, а во второй день: 15 • (5 – х) км.
составим уравнение:
20 • х – 15 • (5 – х) = 30;
20 • х – 75 + 15 • х = 30;
35 • х = 30 + 75;
35 • х = 105;
х = 105 : 35 = 3 (ч) – был в пути в первый день;
5 – х = 5 – 3 = 2 (ч) – был в пути во второй день.
Вычислим расстояние, которое проехал велосипедист за два дня: 20 • 3 + 15 • 2 = 60 + 30 = 90 (км).
Пусть х - одна сторона прямоугольника, тогда другая сторона будет равна х-14. Диагональ прямоугольника делит его на два равных прямоугольных треугольника, тогда диагональ будет их общей гипотенузой, а стороны прямоугольника - их катетами. По т. Пифагора 26²=х²+(х-14)² ⇔ ⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения). Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.
Пусть в первый день велосипедист был в пути х часов, тогда во второй день – (5 – х) часов. За первый день он преодолел расстояние: (20 • х) км, а во второй день: 15 • (5 – х) км.
составим уравнение:
20 • х – 15 • (5 – х) = 30;
20 • х – 75 + 15 • х = 30;
35 • х = 30 + 75;
35 • х = 105;
х = 105 : 35 = 3 (ч) – был в пути в первый день;
5 – х = 5 – 3 = 2 (ч) – был в пути во второй день.
Вычислим расстояние, которое проехал велосипедист за два дня: 20 • 3 + 15 • 2 = 60 + 30 = 90 (км).
ответ: за два дня велосипедист проехал 90 км.
поставь как луший если не сложно
⇔ х²+х²-28х+196=26² ⇔ 2х²-28х-480=0 ⇔ x²-14x-240=0, D=196-4*1*(-240)=1156, x1=14+34/2=48/2=24, x2=14-34/2=-10 (второй корень уравнения не удовлетворяет условию задачи; сторона прямоугольника не может быть равна отрицательному числу; поэтому число -10 мы исключаем из рассмотрения).
Таким образом, стороны прямоугольника равны: 24 см и (24-14)=10см.