Канат подъемного крана прикреплен к вершине круглого конуса, который погружен в воду настолько, что его вершина находится на поверхности воды. Какую работу затратит подъемный кран на извлечение конуса из воды?
Зима-это замечательное цаг года!Вокруг үрглҗ белым-бело,а как красиво сверкают снежинки.Они кружатся в воздухе,проделывая пируэты,и тихо,бесшумно,ложатся на землю.Зимой намного тише,спокойнее. Можно һарх утром дотран киилх морозный воздух,который имеет приятную пробуждающую силу.Но ик всего,конечно,зиму любят күүкд. Сколько счастья можно увидеть на их лицах,когда идешь по улице.Зима-это цаг чудес,цаг исполнения желаний. Может бәәх, именно поэтому зимой өдр короче,длиннее таинственная ночь,которая и создает чудеса. Может бәәх, поэтому именно зимой үрглҗми любимый праздник,когда үрглҗ собираются семьями и загадывают желания, и все вместе верят в чудо.
Пошаговое объяснение:1. Раскрасим основание A1A2...A4 в один из 11 цветов. Такую раскраску можно осуществить
2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 11−1=10 вариантов раскраски, для второй грани SA2A3 имеется 11−2=9 вариантов раскраски, и так далее, для 4-й по порядку грани имеется 11−4=7 вариант(-ов, -a) раскраски. Таким образом, всего получаем
M=11(11−1)(11−2)...(11−4)
вариантов раскраски пирамиды.
3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 4 движений (4 поворотов). Потому искомое число раскрасок будет в 4 раз меньше величины M.
ответ:13860
Пошаговое объяснение:1. Раскрасим основание A1A2...A4 в один из 11 цветов. Такую раскраску можно осуществить
2. Раскрасим теперь по очереди боковые грани пирамиды. Для первой грани SA1A2 имеется 11−1=10 вариантов раскраски, для второй грани SA2A3 имеется 11−2=9 вариантов раскраски, и так далее, для 4-й по порядку грани имеется 11−4=7 вариант(-ов, -a) раскраски. Таким образом, всего получаем
M=11(11−1)(11−2)...(11−4)
вариантов раскраски пирамиды.
3. По условию задачи две раскраски считаются одинаковыми, если получаются друг из друга движением. В нашем случае, у пирамиды существует ровно 4 движений (4 поворотов). Потому искомое число раскрасок будет в 4 раз меньше величины M.
Получаем ответ:
11(11−1)(11−2)...(11−4)4=13860.