Казахско бухарская война (1603-1624 гг.) Цели Бухары: Цели Казахского ханства: Ключевые битвы и сражения: Итог войны для Казахского Итог войны для Бухары: ханства
Одним из наиболее популярных в учебной литературе доказательств алгебраической формулировки является доказательство с использованием техники подобия треугольников, при этом оно почти непосредственно выводится из аксиом и не задействует понятие площади фигуры. В нём для треугольника {\displaystyle \triangle ABC} с прямым углом при вершине {\displaystyle C} со сторонами {\displaystyle a,b,c}, противолежащими вершинам {\displaystyle A,B,C}соответственно, проводится высота {\displaystyle CH}, при этом (согласно признаку подобия по равенству двух углов) возникают соотношения подобия: {\displaystyle \triangle ABC\sim \triangle ACH} и {\displaystyle \triangle ABC\sim \triangle CBH}, из чего непосредственно следуют соотношения:
Записываем делитель, проводим справа вертикальную черту и пишем знаменатель, подчеркиваем его. Берем столько первых цифр делимого, чтобы число, образованное ими, делилось нацело на делитель и было наименьшим. Делим это число на делитель и записываем результат (цифру) под чертой. Умножаем результат на делитель и записываем произведение под выбранными цифрами делимого. Отнимаем от первого второе и дописываем следующую цифру делимого. Повторяем до тех пор, пока после отнимания не получим 0 или число, которое меньше делителя, это будет остаток. Если в записи делимого остались нули, просто переписываем их в конец частного.
{\displaystyle {\frac {a}{c}}={\frac {|HB|}{a}}}; {\displaystyle {\frac {b}{c}}={\frac {|AH|}{b}}}.
При перемножении крайних членовпропорций выводятся равенства:
{\displaystyle a^{2}=c\cdot |HB|}; {\displaystyle b^{2}=c\cdot |AH|},
покомпонентное сложение которых даёт требуемый результат:
{\displaystyle a^{2}+b^{2}=c\cdot \left(|HB|+|AH|\right)=c^{2}\,\Leftrightarrow \,a^{2}+b^{2}=c^{2}}.