Каждую из букв заменить цифрой от 1 до 9 так, чтобы выполнялось равенство К⋅Р⋅У⋅Г=К⋅В⋅А⋅Д⋅Р⋅А⋅Т . Разные буквы заменяются на разные цифры, одинаковые на одинаковые. Какие значения может принимать буква У при А=2 ? (Если значений несколько, выбери их все; начисляются только за полностью верный ответ
2.Вычислите: вектор а минус ветор б,если вектор а=вектору б=1 и угол вектора а и б=45 граусов.
3.Докажите,что векторы ВА и ВС перпендикулярны,если А(0;1) В(2;3) С(-1;6)
Попроси больше объяснений Следить Отметить нарушение Banalnoyes 27.01.2013
Реклама
ответы и объяснения
Участник Знаний
1)Косинус угла между векторами, зная их координаты вычисляется по формуле:
cos α = \frac{x_{1}x_{2} + y_{1}y_{2}}{\sqrt{x_{1}^2 + y_{1}^2}\sqrt{x_{2}^2 + y_{2}^2} }
Здесь x1,x2, y1, y2 - координаты двух векторов.
Подставив в эту формулу координаты, получим:
cos α = (0 * 20 + 60) / √16 * √(20² + (-15)²) = 60 / 4 * √625 = 60 / 4 * 25 = 60/100 = 0.6
Число таких "хороших" семизначных чисел можно найти по формуле числа размещений из n по m (n - нижний индекс при A, m - верхний индекс при A):
A^m_n = n!/(n-m)!
(! - знак факториала)
A^3_9 = 9!/(9-3)!=9!/6!=7*8*9=504 - количество семизначных чисел, состоящих из 3 повторяющихся цифр (например, 7393937).
A^2_9 = 9!/(9-2)!=9!/7!=8*9=72 - количество семизначных чисел, состоящих из 2 повторяющихся цифр (например, 6636663)
A^1_9 = 9!/(9-1)!=9!/8!=9 - количество семизначных чисел, состоящих из 1 повторяющейся цифры (например, 8888888)
Всего таких чисел: A^3_9 + A^2_9 + A^1_9 = 504 + 72 + 9 = 585