Каждый из 11 учащихся придумал по 5 натуральных чисел. Оказалось, что каждое число придумано не менее чем тремя учащимися. Какое наибольшее количество различных чисел могло быть придумано?
Площадь основания a^2; диагональ основания a*корень(2). Это - основание треугольника, который - диагональное сечение. Треугольник этот равнобедренный (боковые стороны - ребра пирамиды). Высота этого треугольника, проведенная к основанию - это высота пирамиды. Обозначим ее Н. Получаем а^2 = Н*a*корень(2)/2; получается, что Н тоже равно a*корень(2). Теперь надо найти апофемы боковых граней. Выберем какую-то сторону основания и проведем в боковой грани, её содержащей, апофему. Проекция этой апофемы перпендикулярна этой стороне, потому что лежит в плоскости, которая перпендикулярна этой стороне - а именно, плоскости, в которой лежат апофема и высота пирамиды (каждая из этих прямых перпендикулярна этой стороне). Следовательно, апофема является гипотенузой в прямоугольном треугольнике, образованной высотой пирамиды и отрезком, выходящим из центра квадрата в основании и препендикулярным стороне. Такой отрезок, очевидно, равен а/2. Легко сосчитать, что апофема m равна m = a*корень(2 + 1/4) = a*корень(9/4) = а*3/2. Площадь боковой грани составит m*a/2 = a^2*3/4, всего боковых граней 4. ответ. Боковая поверхность равна 3*a^2
По теореме косинусов в ΔDSC:
a² = b² + b² - 2·b·b·cos30° = 2b² - 2b²·√3/2 = b²(2 - √3)
b² = a²/(2 - √3) = a² · (2 + √3)/(4 - 3) = a²(2 + √3)
BD = a√2 как диагональ квадрата
BO = a√2/2
ΔSOD: по теореме Пифагора:
b² = 3 + a²/2
a²(2 + √3) = 3 + a²/2
a² (2 + √3 - 1/2) = 3
a²(3 + 2√3)/2 = 3
a² = 6/(3 + 2√3) = 6(2√3 - 3)/3 = 2(2√3 - 3)
V = 1/3 · a² · SO = 1/3 · 2(2√3 - 3) · √3 = 1/3 · (12 - 6√3) = 4 - 2√3
Площадь боковой поверхности - сумма площадей 4-х равных треугольников:
Sбок = 4 · 1/2 · b² · sin30° = b² =
= a²(2 + √3) = 2(2√3 - 3) (2 + √3) = 2(4√3 + 6 - 6 - 3√3) = 2√3
Получаем а^2 = Н*a*корень(2)/2; получается, что Н тоже равно a*корень(2).
Теперь надо найти апофемы боковых граней.
Выберем какую-то сторону основания и проведем в боковой грани, её содержащей, апофему. Проекция этой апофемы перпендикулярна этой стороне, потому что лежит в плоскости, которая перпендикулярна этой стороне - а именно, плоскости, в которой лежат апофема и высота пирамиды (каждая из этих прямых перпендикулярна этой стороне). Следовательно, апофема является гипотенузой в прямоугольном треугольнике, образованной высотой пирамиды и отрезком, выходящим из центра квадрата в основании и препендикулярным стороне. Такой отрезок, очевидно, равен а/2. Легко сосчитать, что апофема m равна
m = a*корень(2 + 1/4) = a*корень(9/4) = а*3/2.
Площадь боковой грани составит m*a/2 = a^2*3/4, всего боковых граней 4.
ответ. Боковая поверхность равна 3*a^2