Расчет для 1993 года - 456-128 = 328, делим на М и Д Д93 = 164, М93 = 164+128=292. Для последующих годов пишем формулы Д(93+n) = Д93+6n = 164+6n М(93+n) =М93-2n = 292-2n 1a) Всего в 2015. Вычисляем n = 2015-1993 = 22 года. Подставим в формулу В(2015) = В(93)+4n = 456+22*4 = 544 чел. ОТВЕТ 1b) М(93-2n) = Д(93+6n) - поровну М и Д. 164+6n = 292-2n 8n=292-164 =128, n=16 N=1993+16= 2009 год. - ОТВЕТ 1с) Сколько Всего, когда Д=М-40 ? 164+6n +40 =292-2n 8n = 292-164-40 = 88 n=11 N=1993+11=2004 - год олимпиады. В(04) = В(93)+4*11 = 456+44 = 500 - ОТВЕТ (М=270 Д=230 В=500) 1d) N - Д = 2*М 164 +6n = 2*(292-2n) = 584-4n 10n = 584-164 = 420 n = 42 N=1993+42= 2035 - ОТВЕТ (М=208 Д=416 В=624) 1е) В среднем 550 чел. N=? 550 - В(93)= 550-456 =94 - делим на 2 для среднего n= 47 n =47 N=1993+47=2040 - ОТВЕТ (В(40)=644 В(16)=548 В(17)=552) Проверено.
456-128 = 328, делим на М и Д
Д93 = 164, М93 = 164+128=292.
Для последующих годов пишем формулы
Д(93+n) = Д93+6n = 164+6n
М(93+n) =М93-2n = 292-2n
1a) Всего в 2015. Вычисляем n = 2015-1993 = 22 года.
Подставим в формулу
В(2015) = В(93)+4n = 456+22*4 = 544 чел. ОТВЕТ
1b) М(93-2n) = Д(93+6n) - поровну М и Д.
164+6n = 292-2n
8n=292-164 =128, n=16
N=1993+16= 2009 год. - ОТВЕТ
1с) Сколько Всего, когда Д=М-40 ?
164+6n +40 =292-2n
8n = 292-164-40 = 88 n=11 N=1993+11=2004 - год олимпиады.
В(04) = В(93)+4*11 = 456+44 = 500 - ОТВЕТ (М=270 Д=230 В=500)
1d) N - Д = 2*М
164 +6n = 2*(292-2n) = 584-4n
10n = 584-164 = 420 n = 42 N=1993+42= 2035 - ОТВЕТ
(М=208 Д=416 В=624)
1е) В среднем 550 чел. N=?
550 - В(93)= 550-456 =94 - делим на 2 для среднего n= 47
n =47 N=1993+47=2040 - ОТВЕТ (В(40)=644 В(16)=548 В(17)=552)
Проверено.
1) Уравнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:
В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.
2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/(Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х - 1.
3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/(Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:
y = 3x - 1.
4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x - 1 и у = -х - 1.
4х = 0,
х = 0, у = -1.
5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/(Ув-Уа).
х - у + 9 = 0,
у = х + 9.
6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8.485281.