В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
nyurachernikov
nyurachernikov
10.04.2020 04:50 •  Математика

Количество целых решений неравенства x в 5-ой степени │x² + 4x +3│≥ 0 на промежутке [-2; 6] равно.

Показать ответ
Ответ:
aiis171
aiis171
08.07.2020 08:59
x^5|x^2+4x+3| \geq 0\\x^5|(x+3)(x+1)| \geq 0
x+3=0   x+1=0
x=-3      x=-1

__________-3______________-1_________

1) x ≤ -3    x^5(x+3)(x+1)≥0
         -                           +                           -                       +     
____________-3_____________-1____________0_______

x=-3 - единственное решение на данном промежутке

2) -3 < x ≤ -1     -x^5(x+3)(x+1)≥0
           +                          -                             +                  -
____________-3_____________-1____________0_______

x=-1 - единственное решение  на данном промежутке

3) x>1      x^5(x+3)(x+1)≥0
               -                    +                              -                      +
____________-3_____________-1____________0_______

x∈ [0;+∞) - решения на данном промежутке

Общее решение неравенства: x∈{-3}∨{-1}∨[0;+∞)

На отрезке [-2;6] решениями являются целые числа -1; 0; 1; 2; 3; 4; 5; 6
Всего их восемь.

ответ: 8
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота