В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
dionis01
dionis01
03.08.2022 00:46 •  Математика

Количество диагоналей выпуклого многоугольника больше 2015, какое наименьшее количество вершин может быть у этого многоугольника? с решением. ответ должен быть или а.63 , или б. 64 , или в. 65, или г. 66. заранее .

Показать ответ
Ответ:
Ивангай228666
Ивангай228666
15.09.2020 11:15
Число диагоналей у выпуклого N угольника равно N(N-3)/2.
Т.о., решаем неравенство:
N(N-3)/2>2015
N(N-3)>4030
N²-3N-4030>0

D² = 3²+4030*4 = 16129 = 127²
N₁ = (3+127)/2 = 130/2 = 65
N₂ = (3-127)/2 < 0 - не может быть числом вершин
Значит, при 65 вершинах число диагоналей равно 65*62/2=65*31=2015. Но по условию диагоналей больше, поэтому число вершин должно быть больше 65. Наименьшее такое число - 66.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота