В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
злючка26
злючка26
03.04.2023 15:45 •  Математика

КОМПЛЕКСНЫЕ ЧИСЛА z^2+(1+2i) z-3i=0 ​

Показать ответ
Ответ:
verka000
verka000
04.12.2020 13:33

z=-\dfrac12-i\pm\dfrac12\sqrt[4]{265}\Bigg(\sin\dfrac12\b{arctg}\bigg(\dfrac{16}3\bigg)+i\cos\dfrac12\b{arctg}\bigg(\dfrac{16}3\bigg)\Bigg)

Пошаговое объяснение:

z^2+(1+2i)z-3i=0\\z=\dfrac{-1-2i\pm\sqrt{(1+2i)^2+12i}}{2}\\z=\dfrac{-1-2i\pm\sqrt{1+4i-4+12i}}{2}\\z=\dfrac{-1-2i\pm\sqrt{-3+16i}}{2}\\z=-\dfrac12-i\pm\dfrac12\sqrt{16i-3}

Извлечем корень:

z = 16i-3\\|z|=-\sqrt{16^2+3^2}=-\sqrt{256+9}=-\sqrt{265}\\\arg z=\b{arctg}\bigg(-\dfrac{16}{3}\bigg)=-\b{arctg}\bigg(\dfrac{16}3\bigg)

тогда по формуле Мурава\sqrt z=z^\frac12=|z|^\frac12\Bigg(\cos\dfrac12\arg z+i\sin \dfrac12\arg z\Bigg)=\sqrt[4]{265}\Bigg(\sin\dfrac12\b{arctg}\bigg(\dfrac{16}3\bigg)+i\cos\dfrac12\b{arctg}\bigg(\dfrac{16}3\bigg)\Bigg)Запишем ответ

z=-\dfrac12-i\pm\dfrac12\sqrt[4]{265}\Bigg(\sin\dfrac12\b{arctg}\bigg(\dfrac{16}3\bigg)+i\cos\dfrac12\b{arctg}\bigg(\dfrac{16}3\bigg)\Bigg)

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота