(1м+3п)-умножим на 3 и получим (3м+9п) По условию (3м+4п) делится на 5, найдем разность: (3м+9п)-(3м+4п)=5п, сколько бы не стоили пирожные при умнжении на пять мы получим цену, за которую можно расплатиться пятирублевками. Отсюда следует, что (3м+9п) делится на 5, (1м+3п) в три раза меньше чем(3м+9п), значит цена Катиной покупки будет делиться на 5 если(3м+9п)будет делится еще и на 3, а оно будет делится тк каждое слагаемое этой суммы делится на 3. Значит Катя сможет расплатиться пятирублевыми монетами. ответ: да, сможет.
Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.
Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки. Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.
Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).
Проще всего понять прямо пропорциональную зависимость на примере станка, изготавливающего детали с постоянной скоростью. Если за два часа он делает 25 деталей, то за 4 часа он изготовит деталей вдвое больше — 50. Во сколько раз дольше времени он будет работать, во столько же раз больше деталей он изготовит.
Математически это выглядит так:
4 : 2 = 50 : 25 или так: 2 : 4 = 25 : 50
Прямо пропорциональными величинами тут являются время работы станка и число изготовленных деталей.
Говорят: Число деталей прямо пропорционально времени работы станка.
Если две величины прямо пропорциональны, то отношения соответствующих величин равны. (В нашем примере — это отношение времени 1 к времени 2 = отношению количества деталей за время 1 к количеству деталей за время 2)
По условию (3м+4п) делится на 5, найдем разность: (3м+9п)-(3м+4п)=5п, сколько бы не стоили пирожные при умнжении на пять мы получим цену, за которую можно расплатиться пятирублевками. Отсюда следует, что (3м+9п) делится на 5,
(1м+3п) в три раза меньше чем(3м+9п), значит цена Катиной покупки будет делиться на 5 если(3м+9п)будет делится еще и на 3, а оно будет делится тк каждое слагаемое этой суммы делится на 3. Значит Катя сможет расплатиться пятирублевыми монетами.
ответ: да, сможет.
Прямая пропорциональность – это такая зависимость двух величин, при которой увеличение либо уменьшение одной из них ведет к увеличению либо уменьшению другой. Т.е. их отношение не изменяется.
Например, чем больше усилий вы прилагаете для подготовки к экзаменам, тем выше ваши оценки. Или чем больше вещей вы берете с собой в поход, тем тяжелее нести ваш рюкзак. Т.е. количество затраченных на подготовку к экзаменам усилий прямо пропорционально полученным оценкам. И количество запакованных в рюкзак вещей прямо пропорционально его весу.
Обратная пропорциональность – это функциональная зависимость, при которой уменьшение либо увеличение в несколько раз независимой величины (ее называют аргументом) вызывает пропорциональное (т.е. во столько же раз) увеличение либо уменьшение зависимой величины (ее называют функцией).
Проще всего понять прямо пропорциональную зависимость на примере станка, изготавливающего детали с постоянной скоростью. Если за два часа он делает 25 деталей, то за 4 часа он изготовит деталей вдвое больше — 50. Во сколько раз дольше времени он будет работать, во столько же раз больше деталей он изготовит.
Математически это выглядит так:
4 : 2 = 50 : 25 или так: 2 : 4 = 25 : 50
Прямо пропорциональными величинами тут являются время работы станка и число изготовленных деталей.
Говорят: Число деталей прямо пропорционально времени работы станка.
Если две величины прямо пропорциональны, то отношения соответствующих величин равны. (В нашем примере — это отношение времени 1 к времени 2 = отношению количества деталей за время 1 к количеству деталей за время 2)