Допустим, что на заводе, расположенном в первом городе, рабочие трудятся x2 часов, а на заводе, расположенном во втором городе, y2 часов. Тогда в неделю будет произведено 2x + 5y единиц товара, а затраты на оплату труда составят 500(x2 + y2) рублей. В этом случае нужно найти наименьшее значение 500(x2 + y2) при условии 2x + 5y =580. Выразим y через x:
Таким образом, нам нужно найти наименьшее значение функции
при 0 ≤ x ≤ 290. После преобразования получаем:
Наименьшее значение квадратного трёхчлена достигается при
причём При этом значении получаем: ответ: 5 800 000.
Зная S10 и S(11-20) cоставим и решим систему уравнений относительно a1 и d:
10a1+45d = 95
10a1+145d = 295
Вычтем из второго уравнения первое, а из первого выразим a1:
a1 = (95-45d)/10
100d = 200
a1 = 5/10 = 0,5
d = 2
Зная первый член прогрессии и её шаг, можем найти сумму членов этой прогрессии с 21 по 30. Она будет равна разности сумм первых 30 членов и первых 20 членов:
ответ: ответ: 5 800 000.
Пошаговое объяснение:
Допустим, что на заводе, расположенном в первом городе, рабочие трудятся x2 часов, а на заводе, расположенном во втором городе, y2 часов. Тогда в неделю будет произведено 2x + 5y единиц товара, а затраты на оплату труда составят 500(x2 + y2) рублей. В этом случае нужно найти наименьшее значение 500(x2 + y2) при условии 2x + 5y =580. Выразим y через x:
Таким образом, нам нужно найти наименьшее значение функции
при 0 ≤ x ≤ 290. После преобразования получаем:
Наименьшее значение квадратного трёхчлена достигается при
причём При этом значении получаем: ответ: 5 800 000.
Пошаговое объяснение:
Сумма первых 10 членов
S10 = (2a1+9d)/2*10 = 5*(2a1+9d) = 10a1+45d
Сумма с 11 по 20 равна разнице сумм первых 20 членов и первых 10 членов.
S20 = (2a1+19d)/2*20 = 10*(2a1+19d) = 20a1+190d
S(11-20) = S20-S10 = 20a1+190d-10a1-45d = 10a1+145d.
Зная S10 и S(11-20) cоставим и решим систему уравнений относительно a1 и d:
10a1+45d = 95
10a1+145d = 295
Вычтем из второго уравнения первое, а из первого выразим a1:
a1 = (95-45d)/10
100d = 200
a1 = 5/10 = 0,5
d = 2
Зная первый член прогрессии и её шаг, можем найти сумму членов этой прогрессии с 21 по 30. Она будет равна разности сумм первых 30 членов и первых 20 членов:
S(21-30) = S30-S20 = (2a1+29d)/2*30-(2a1+19d)/2*20 = 15*(2a1+29d)-10*(2a1+19d) = 30a1+435d-20a1-190d = 10a1+245d = 10*0,5+245*2 = 5+490 = 495