Контрольная работа №9 по теме:
«Умножение и деление рациональных чисел».
Вариант 1
1. Выполните действия:
1) −2,1 ・ 3,8; 3) −14,16 : (−0,6);
2) −1 11/13 ⋅( −2 ); 4) −18,36 : 18.
2. У выражение:
1) −1,6x ・ (−5y);
2) −7a − 9b + a + 11b; 3) a − (a − 8) + (12 + a); 4) −3(c − 5) + 6(c + 3).
3. Найдите значение выражения:
(−4,16 − (−2,56)) : 3,2 − 1,2 ・ (−0,6).
4. У выражение −2(2,7x − 1) − (6 − 3,4x) + 8(0,4x − 2) и вычисли-
те его значение при x = −5/6.
5. Чему равно значение выражения −0,8x − (0,6x − 0,7y), если
Максимальное количество правдивых гоблинов - 56.
По одному с каждого края и далее - через одного.
По условию, справа и слева от каждого правдивого должны стоять лжецы.
Иначе правдивые солгут.
Справа и слева от каждого лжеца должны стоять правдивые.
Иначе лжецы скажут правду.
Возможно чередование, когда вначале и в конце стоят лжецы. Условие будет соблюдено, однако, в этом случае лжецов будет на 1 больше, чем правдивых.
То есть максимальное количество правдивых:
111 = 110 + 1 = 55*2 + 1 = 56 + 55
56 правдивых гоблинов и 55 лжецов.
1.Нахождение области определения функции
Определение интервалов, на которых функция существует.
!!! Очень подробно об области определения функций и примеры нахождения области определения тут.
2.Нули функции
Для вычисления нулей функции, необходимо приравнять заданную функцию к нулю и решить полученное уравнение. На графике это точки пересечения с осью ОХ.
3.Четность, нечетность функции
Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x). Если функция четная – график функции симметричен относительно оси ординат (OY). Если функция нечетная – график функции симметричен относительно начала координат.
4.Промежутки знакопостоянства
Расстановка знаков на каждом из интервалов области определения. Функция положительна на интервале - график расположен выше оси абсцисс. Функция отрицательна - график ниже оси абсцисс.
5. Промежутки возрастания и убывания функции.
Для определения вычисляем первую производную, приравниваем ее к нулю. Полученные нули и точки области определения выносим на числовую прямую. Для каждого интервала определяем знак производной. Производная положительна - график функции возрастает, отрицательна - убывает.
6. Выпуклость, вогнутость.
Вычисляем вторую производную. Находим значения, в которых вторая производная равна нулю или не существует. Вторая производная положительна - график функции выпукл вверх. Отрицательна - график функции выпукл вниз.
7. Наклонные асимптоты.
Пример исследования функции и построения графика №1
Исследовать функцию средствами дифференциального исчисления и построить ее график.
Пошаговое объяснение: