1) у нас этот факт доказывался в школьном учебнике при выводе "первого замечательного предела". рассуждение было . брался угол величиной xx радиан в первой координатной четверти. площадь сектора единичной окружности при этом равна 12x12x. этот сектор содержится в прямоугольном треугольнике, один из катетов которого равен 1 (горизонтальный), а второй равен tgxtgx (вертикальный). его площадб равна 12tgx12tgx. отсюда из сравнения площадей следует неравенство x< tgxx< tgx, то есть xcosx< sinxxcosx< sinx.
2) надо рассмотреть производную функции: y′=5ax2−60x+5(a+9)y′=5ax2−60x+5(a+9) и потребовать, чтобы она нигде не была отрицательной. ясно, что a> 0a> 0, и тогда у квадратного трёхчлена ax2−12x+a+9ax2−12x+a+9должен быть дискриминант d≤0d≤0. это значит, что a2+9a−36≥0a2+9a−36≥0, откуда a∈(−∞; −12]∪[3; +∞)a∈(−∞; −12]∪[3; +∞). с учётом положительности aa имеем a∈[3; +∞)a∈[3; +∞).
1) у нас этот факт доказывался в школьном учебнике при выводе "первого замечательного предела". рассуждение было . брался угол величиной xx радиан в первой координатной четверти. площадь сектора единичной окружности при этом равна 12x12x. этот сектор содержится в прямоугольном треугольнике, один из катетов которого равен 1 (горизонтальный), а второй равен tgxtgx (вертикальный). его площадб равна 12tgx12tgx. отсюда из сравнения площадей следует неравенство x< tgxx< tgx, то есть xcosx< sinxxcosx< sinx.
2) надо рассмотреть производную функции: y′=5ax2−60x+5(a+9)y′=5ax2−60x+5(a+9) и потребовать, чтобы она нигде не была отрицательной. ясно, что a> 0a> 0, и тогда у квадратного трёхчлена ax2−12x+a+9ax2−12x+a+9должен быть дискриминант d≤0d≤0. это значит, что a2+9a−36≥0a2+9a−36≥0, откуда a∈(−∞; −12]∪[3; +∞)a∈(−∞; −12]∪[3; +∞). с учётом положительности aa имеем a∈[3; +∞)a∈[3; +∞).
Пошаговое объяснение:
Чтобы решить 90 * (m - 8) + 60 = 510 уравнение используем тождественные преобразования.
Первым действием переносим 60 в правую часть уравнения и меняем его знак на противоположный.
90 * (m - 8) = 510 - 60;
90 * (m - 8) = 450;
Разделим на 90 обе части уравнения и получим тождественно равное ему:
m - 8 = 450 : 90;
m - 8 = 5;
И последним действием перенесем -8 в правую часть уравнения и сменим его знак на "+".
m = 5 + 8;
m = 13.
Решением уравнения является значение переменной равное 13.
ответ: m = 13.