Рациональное число (лат. ratio «отношение, деление, дробь») — число, которое можно представить обыкновенной дробью {\displaystyle {\frac {m}{n}}}, числитель {\displaystyle m} — целое число, а знаменатель {\displaystyle n} — натуральное число. К примеру {\displaystyle {\frac {2}{3}}}, где {\displaystyle m=2}, а {\displaystyle n=3}. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n} — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.
Пошаговое объяснение:
Рациональное число (лат. ratio «отношение, деление, дробь») — число, которое можно представить обыкновенной дробью {\displaystyle {\frac {m}{n}}}, числитель {\displaystyle m} — целое число, а знаменатель {\displaystyle n} — натуральное число. К примеру {\displaystyle {\frac {2}{3}}}, где {\displaystyle m=2}, а {\displaystyle n=3}. Понятие дроби возникло несколько тысяч лет назад, когда, сталкиваясь с необходимостью измерять некоторые величины (длину, вес, площадь и т. п.), люди поняли, что не удаётся обойтись целыми числами и необходимо ввести понятие доли: половины, трети и т. п. Дробями и операциями над ними пользовались, например, шумеры, древние египтяне и греки.
Иррациона́льное число́ — это вещественное число, которое не является рациональным, то есть не может быть представлено в виде обыкновенной дроби {\displaystyle \pm {\frac {m}{n}}}, где {\displaystyle m,n} — натуральные числа. Иррациональное число может быть представлено в виде бесконечной непериодической десятичной дроби.