1. есть 2 способа найти нод(наибольший общий делитель - число, на которое x и у делятся без остатка). первый способ - подбирать. он подходит, если числа небольшие. нпр. 12 и 9. 12: 1 =12, 12: 2=6, 12: 3=4, 12: 4=3, 12: 6=2, 12: 12=1 и так же с 9. 9: 1=9, 9: 3=3, 9: 9=1. наибольшее 1. просто делишь, потом полученное опять делишь и так, пока не останется один. потом из левого столбика вычеркиеваешь 7(она есть только у одного числа, но нет у другого) и оставшиеся две двойки умножаешь. 2×2=4 (нод)
2. наименьшее общее кратное (нок) это число которое делится и на х и на на у без остатка. опять же есть 2 способа: первый - умножить каждое число на 1, на 2, на 3 и тд как в таблице умножения. нпр возьмем 3 и 4: 3×1=3, 4×1=4, 3×2=6, 4×2=8, 3×3=9, 4×3=12, 3×4=12 их нок - 12. (да, можно было бы просто их помножить, но это не всегда будет наименьшее кратное (нпр 3 и 9 их нок - 9, а не 27) ) второй способ - разложить на множители. см картинку 2. во втором разложении есть две двойки, которых нет в первом, так что добвляем их туда. 3×3×2×2=36 это их нок.
Когда боцман сказал, что уверен, что кок не знает где клад, значит он не рассматривал варианты расположения клада в C3 и D2. Отсюда, можно сделать вывод, что ему капитан сказал А или B. Прикинув это, кок однозначно определил по оставшимся позициям расположение клада, о чём и сообщил боцману. Тот, поглядев на карту, понял, что только в 4-м столбце нельзя однозначно определить расположение клада, зная номер столбца. Имея всю информацию, боцман тоже понял где клад, а из всех оставшихся позиций (B1, B5, A6) только одна позволяет однозначно определить расположение клада, имея информацию о номере строки, в которой он расположен: это A6.
ответ:
ответил только на 1 и 3
1. есть 2 способа найти нод(наибольший общий делитель - число, на которое x и у делятся без остатка). первый способ - подбирать. он подходит, если числа небольшие. нпр. 12 и 9. 12: 1 =12, 12: 2=6, 12: 3=4, 12: 4=3, 12: 6=2, 12: 12=1 и так же с 9. 9: 1=9, 9: 3=3, 9: 9=1. наибольшее 1. просто делишь, потом полученное опять делишь и так, пока не останется один. потом из левого столбика вычеркиеваешь 7(она есть только у одного числа, но нет у другого) и оставшиеся две двойки умножаешь. 2×2=4 (нод)
2. наименьшее общее кратное (нок) это число которое делится и на х и на на у без остатка. опять же есть 2 способа: первый - умножить каждое число на 1, на 2, на 3 и тд как в таблице умножения. нпр возьмем 3 и 4: 3×1=3, 4×1=4, 3×2=6, 4×2=8, 3×3=9, 4×3=12, 3×4=12 их нок - 12. (да, можно было бы просто их помножить, но это не всегда будет наименьшее кратное (нпр 3 и 9 их нок - 9, а не 27) ) второй способ - разложить на множители. см картинку 2. во втором разложении есть две двойки, которых нет в первом, так что добвляем их туда. 3×3×2×2=36 это их нок.
А6
Пошаговое объяснение:
С6.
Пошаговое объяснение:
Когда боцман сказал, что уверен, что кок не знает где клад, значит он не рассматривал варианты расположения клада в C3 и D2. Отсюда, можно сделать вывод, что ему капитан сказал А или B. Прикинув это, кок однозначно определил по оставшимся позициям расположение клада, о чём и сообщил боцману. Тот, поглядев на карту, понял, что только в 4-м столбце нельзя однозначно определить расположение клада, зная номер столбца. Имея всю информацию, боцман тоже понял где клад, а из всех оставшихся позиций (B1, B5, A6) только одна позволяет однозначно определить расположение клада, имея информацию о номере строки, в которой он расположен: это A6.